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Abstract

We prove a stability version of Harper’s cube vertex isoperimetric inequality, showing that

subsets of the cube with vertex boundary close to the minimum possible are close to (generalised)

Hamming balls. Furthermore, we obtain a local stability result for ball-like sets that gives a sharp

estimate for the vertex boundary in terms of the distance from a ball, and so our stability result

is essentially tight (modulo a non-monotonicity phenomenon). We also give similar results for

the Kruskal–Katona Theorem and applications to new stability versions of some other results in

Extremal Combinatorics.

1 Introduction

Isoperimetric inequalities have a long history in mathematics, starting from the classical Euclidean

isoperimetric inequality in Rd that balls minimise surface area among all sets with given volume.

There is also a rich theory of isoperimetric inequalities in the discrete setting, which has broad

connections to a number of topics, including the concentration of measure phenomena, random

graph and satisfiability thresholds and high-dimensional geometry. This theory starts with the

isoperimetric inequalities for the n-cube Qn, which is the graph on vertex set {0, 1}n in which

vertices are adjacent if they differ in a single coordinate. There are two natural notions of boundary

for a set A ⊂ {0, 1}n: the vertex boundary ∂v(A) = {x′ ∈ {0, 1}n\A : xx′ ∈ E(Qn) for some x ∈ A}
and the edge boundary ∂e(A) = {xy ∈ E(Qn) : x ∈ A, y /∈ A}.

This paper will be concerned with the vertex boundary, for which the isoperimetric inequality

was obtained by Harper [20]. To state his result, we define the simplical order on {0, 1}n = P[n] by

A < B if |A| > |B| or |A| = |B| and max(A4B) ∈ B. We write Im = I(n)m for its initial segment of

size m. Harper’s theorem states that if A ⊂ {0, 1}n with |A| = m then |∂v(A)| ≥ |∂v(Im)|. Given

this inequality, it is natural to ask for which structures equality holds (extremal configurations)

or approximate equality holds (stability). We are not aware of any results on these questions in

the previous literature (by constrast, there are several such results [8, 9, 17, 21, 25, 26] for the

edge-isoperimetric inequality in the cube).

Our first result gives a stability result for Harper’s theorem for sets that have the same size

as a Hamming ball B = Bnn−k(C) := {A ⊂ {0, 1}n : |A4C| ≤ n − k}; here we note that all

such balls have the same vertex-boundary (they can be identified by automorphisms of Qn) and if

m =
(
n
≥k
)

:=
∑n
i=k

(
n
i

)
then Im =

(
[n]
≥k
)

:= ∪ni=k
(
[n]
i

)
= Bnn−k([n]).
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Theorem 1.1. Suppose δ ∈ (0, 1) and A ⊂ {0, 1}n with |A| = m =
(
n
≥k
)

and |∂v(A)| ≤ (1 +
c
n )
(
n
k−1
)
, with c = 10−3δ. Then |A4H| ≤ δ

(
n−1
k−1
)

for some Hamming ball H. Furthermore, if

|A4H| = 2D then |∂v(A)| ≥ |∂v(J )| where J = Im−D ∪ (Im+D \ Im).

Remarks.

(i) Theorem 1.1 is tight up to the value of the constant c. For example, if n = 2k− 1 is odd then

a ‘projected Hamming ball’ A = {A ⊂ [n] : |A∩ [n− 2]| ≥ k− 1} has size |A| = 2n−1 =
(
n
≥k
)
,

boundary |∂v(A)| = 4
(
n−2
k−2
)

= 4(k−1)(n−k+1)
n(n−1)

(
n
k−1
)

=
(
1 + 1

n

)(
n
k−1
)

but |A4H| ≥
(
n−1
k−1
)

for

any Hamming ball H.

(ii) The ‘furthermore’ statement of Theorem 1.1 is a strong ‘local stability’ result that gives a

sharp estimate for the vertex boundary in terms of the distance from a ball; it implies that if

the first statement holds with any value of c then it in fact holds with an essentially optimal

value. In particular, we obtain uniqueness of the extremal configurations: if |∂v(A)| =
(
n
k−1
)

then A is a Hamming ball.

(iii) It is tempting to guess that the local stability result determines the exact dependence of c on δ,

i.e. the minimum possible value of |∂v(A)| over all A with |A| = m and given |A4H| <
(
n−1
k−1
)
.

Somewhat surprisingly, this is not true, as the minimum value of |∂v(A)| is not monotone

in |A4H|. For example, if n = 5 and k = 3 (so m = 16) then for D = 0, 1, 2, 3, 4 we have

|∂v(J )| = 10, 12, 13, 12, 13.

As Theorem 1.1 describes the stability of Harper’s theorem for special values of m = |A|, one

will naturally ask next about general m, say m =
(

n
≥k+1

)
+ m′ with 0 ≤ m′ <

(
n
k

)
. Here we note

that if A =
(

[n]
≥k+1

)
∪ C where C ⊂

(
[n]
k

)
with |C| = m′ then |∂v(A)| =

(
n
k

)
− m′ + |∂C|, where

∂C = {B ∈
(

[n]
k−1
)

: B ⊂ A for some A ∈ C} is the (lower) shadow of C. By Harper’s theorem,

|∂v(A)| ≥ |∂v(Im)| =
(
n
k

)
− m′ + |∂I(k)m′ |, where I(k)m′ is the initial segment of length m′ in the

colex order on
(
[n]
k

)
(where A < B if max(A4B) ∈ B). Equivalently, |∂C| ≥ |∂I(k)m′ |, which is the

Kruskal–Katona theorem (see [27, 22]). Thus a stability result for the Kruskal–Katona theorem is

a prerequisite for one in the general case of Harper’s theorem.

The extremal configurations in the Kruskal–Katona theorem were classified by Füredi and Griggs

[19] and independently by Mörs [29]. In the stability context, it is more convenient1 to work with

the following slightly weaker version of the Kruskal–Katona theorem due to Lovász [28]: regarding(
x
k

)
= x(x−1) . . . (x−k+1)/k! as a polynomial in x ∈ R, if A ⊂

(
[n]
k

)
and |A| =

(
x
k

)
with x ≥ k then

|∂(A)| ≥
(
x
k−1
)
. Keevash [24] gave a stability2 version of this result, showing that for any k ∈ N

and δ > 0 there is ε > 0 so that for A ⊂
(
[n]
k

)
, if |A| =

(
x
k

)
with x ≥ k and |∂(A)| < (1 + ε)

(
x
k−1
)

then |A4
(
S
k

)
| < δ

(
x
k

)
for some S ∈

(
[n]
dxe
)
. Our next theorem concerns sets that are somewhat

closer to a clique (with distance on a scale of
(
x−1
k−1
)

rather than
(
x
k

)
), for which we give a stronger

stability result with parameters that are tight up to the value of the constant c. Furthermore, as in

Theorem 1.1, we obtain a strong ‘local stability’ result that gives a sharp estimate for the shadow

boundary in terms of the distance from a clique, which implies an essentially optimal dependence

of parameters (again with the non-monotonicity caveat). In particular, this gives another proof for

1The exact function implicit in the Kruskal–Katona theorem is rather pathological: Frankl, Matsumoto, Ruzsa and

Tokushige [16] proved that an appropriate rescaling converges to the Takagi function, which is continuous but nowhere

differentiable.
2Our use of the term ‘stability’ in this paper refers to results that are also known as ‘99% stability’ results, in that they

describe structures that are very close to optimal. In many contexts it is also interesting to describe some properties of

structures that are only within a constant factor of optimal; such a ‘1% stability’ result for the Kruskal–Katona theorem

was given by O’Donnell and Wimmer [30].
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uniqueness of the extremal examples in the Lovász form of Kruskal–Katona, i.e. if |∂(A)| =
(
x
k−1
)

then x ∈ N and A =
(
S
k

)
for some S ∈

(
[n]
x

)
. For S ⊂ [n] we define

J (k)
|S|,E1,E2

:= I(k)(|S|−1
k

)
+E1

∪
(
I(k)(|S|

k

)
+E2

\ I(k)(|S|
k

)). (1)

Theorem 1.2. If δ0 ∈ (0, 1) and A ⊂
(
[n]
k

)
with |A| =

(
x
k

)
and |∂(A)| ≤ (1 + c

x )
(
x
k−1
)
, with

c = 10−9δ0, then |A4
(
S
k

)
| ≤ δ0

(|S|−1
k−1

)
for some S ⊂ [n]. Furthermore, if |A ∩

(
S
k

)
| =

(|S|−1
k

)
+ E1

and |A \
(
S
k

)
| = E2 where 0 ≤ E1, E2 ≤

(|S|−1
k−1

)
then |∂(A)| ≥ |∂(J (k)

|S|,E1,E2
)|.

Now we return to the structural characterisation of Harper’s theorem for general sizes of the

family A. Given the stability results in Theorems 1.1 and 1.2, one might conjecture a similar

stability statement for initial segments of the simplicial order. However, this is not true, as there

is another extremal configuration! Suppose m =
(

n
≥k+1

)
+
(
s
k

)
with k ≤ s ≤ n. Let

G1 =
(

[n]
≥k+1

)
∪
(
[s]
k

)
and G2 =

(
[n]
≥k+1

)
∪
(
[s−1]
k

)
∪
(
[s−1]
k−1

)
.

Then G1 = Im is the initial segment of size m in the simplical order, which is extremal by Harper’s

theorem. Also, |G2| = |G1| = m and |∂v(G2)| =
(
n
k

)
−
(
s−1
k

)
+
(
s−1
k−2
)

=
(
n
k

)
−
(
s
k

)
+
(
s

k−1
)

= |∂v(G1)|.
Furthermore, if s < n then G1 and G2 are not isomorphic. We refer to G1 and G2 as generalised

Hamming balls. Our general stability result for Harper’s theorem roughly says that any family that

is close to extremal must be close to a generalised Hamming ball. As for our stability result for

Kruskal–Katona, our benchmark will be the corresponding Lovász form of the vertex isoperimetric

inequality: if A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
then

|∂v(A)| ≥ Blov(|A|) :=
(
n
k

)
−
(
x
k

)
+
(
x
k−1
)
. (2)

Again, our parameters are essentially optimal, as we also obtain a local stability result, with respect

to the constructions

Jm,D,E := Im−D ∪ (Im+E \ Im).

Theorem 1.3. Let δ ∈ (0, 1), c = 10−10δ and A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
for some k ≥ 2.

If |∂v(A)| ≤ Blov(|A|) + ck(x−k)
x3

(
x
k−1
)

then |A4G| ≤ δ
(
x−3
k−2
)

for some generalised Hamming ball G.

Furthermore, writing m = |G|, D = |G \A|, E = |A \ G|, we have |∂v(A)| ≥ |∂v(Jm,D,E)|.

Note that the assumption k ≥ 2 in Theorem 1.3 is necessary, as if |A| >
(
n
≥2
)

then ∂v(A) =

{0, 1}n \ A, regardless of the structure of A, so there is no stability.

We also give several applications of the above theorems to stability versions of other results in

Extremal Combinatorics. We start with the classical Erdős-Ko-Rado theorem [12], that if k ≤ n/2
and A ⊂

(
[n]
k

)
is intersecting (A ∩ B 6= ∅ for all A,B ∈ A) then |A| ≤

(
n−1
k−1
)
, and if k < n/2 then

equality holds only for a star Si = {A ∈
(
[n]
k

)
: i ∈ A}. There are many stability versions of this

inequality in the literature (see [3, 4, 7, 10, 13, 18, 24]).

Here we will prove a tight stability result for intersecting families with size sufficiently close to

that of a star, which determines exactly how large such a family can be in terms of the number E of

sets outside the star. Given E ≤
(
n−2
k−1
)
, we show that there is an extremal family FE = FoutE ∪F inE ,

where FoutE consists of the final E sets of
(
[n]\{1}

k

)
in colex order, and F inE ⊂ S1 consists of all sets

in the star that intersect all sets in FoutE . Note that as E ≤
(
n−2
k−1
)

all sets in FoutE contain n, so FE
is intersecting.

Theorem 1.4. Let θ ∈ (0, 1/4), c = 10−12θ and n, k ∈ N with 2k < n. Suppose A ⊂
(
[n]
k

)
is intersecting. If |A| ≥

(
1 − c(n−2k)

n

)(
n−1
k−1
)

then there is a star S with E := |A \ S| ≤ 2θ|S|.
Furthermore, |A| ≤ |FE |. In particular, if E =

(
u

n−k−1
)

where u ≤ n − 2 then |A| ≤
(
n−1
k−1
)
−(

u
k−1
)

+ E.
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Remark: The upper bound on |A \ S| above follows from Theorem 1.2 of Das and Tran in [4].

Next we consider a theorem of Katona [23] on families A ⊂ {0, 1}n that are t-intersecting

(|A ∩ B| ≥ t for all A,B ∈ A). For simplicity we just consider the case that n+ t = 2k is even, in

which case Katona’s theorem gives |A| ≤
(
n
≥k
)
. If t ≥ 2 then equality holds only for the Hamming

ball
(
[n]
≥k
)
. Here we prove a tight stability result for t-intersecting families with size sufficiently

close to that of a Hamming ball, which determines exactly how large such a family can be in

terms of the number E of sets outside the ball. Given k, n ∈ N, t = 2k − n ≥ 2, E ≤
(
n−1
k−1
)
, we

show that there is an extremal family GE obtained from
(
[n]
≥k
)

by adding the initial E elements of(
[n]
k−1
)

in colex and deleting the final E′ elements of
(
[n]
k

)
in colex, where E′ is minimum subject to

|∂t−1(I
(k)(
n
k

)
−E′

)| ≤
(

n
n−k+1

)
− E.

Theorem 1.5. Let k, n ∈ N so that k + t even, t = 2k − n ≥ 2, and θ = min{10−6tn−1et
2/n, 1}

and δ ∈ (0, 1/4). If A ⊂ {0, 1}n is t-intersecting and |A| ≥
(
n
≥k
)
− θδ

(
n−1
k−1
)

then E := |A \
(
[n]
≥k
)
| ≤

5θδ
(
n−1
k−1
)
, so |A4

(
[n]
≥k
)
| ≤ 11θδ

(
n−1
k−1
)
. Furthermore, |A| ≤ |GE |. In particular, if E =

(
u
k−1
)

where

u ≤ n− 1 then |A| ≤
(
n
≥k
)

+ E −
(
u

n−k
)
.

For our final application we consider the Erdős Matching Conjecture (see [11]) that the maximum

size of A ⊂
(
[n]
k

)
with no matching of size t+1 is achieved by

(
[tk+k−1]

k

)
or ST = {A ∈

(
[n]
k

)
: |A∩T | 6=

∅} for some T ∈
(
[n]
t

)
. Ellis, Keller and Lifshitz [10] showed how stability for this problem can be

deduced from isoperimetric stability. (We thank Noam Lifshitz for drawing this to our attention

and suggesting that we might be able to obtain the improved bounds given here.) Frankl [14]

showed that the ST are (uniquely) extremal for n > (2t + 1)k − t. We will use this to obtain the

following stability result.

Theorem 1.6. Let δ ∈ (0, 1/4), c = 10−10δ and r, t, k, n ∈ N with r ≤ k and n > (2t+1)(k+r)− t.
If A ⊂

(
[n]
k

)
has no matching of size t+ 1 and |A| >

(
n
k

)
− (1 + rc

n )
(
n−t
k

)
then there is T ∈

(
[n]
t

)
such

that |A4ST | < 3δ
(
n−t−1
k−1

)
.

The main new proof technique in our paper is a method for extracting stability results from

compression arguments. As far as we are aware, all known proofs of Harper’s Theorem use some

form of compression, i.e. replacing any family by a sequence of successively ‘simpler’ families of the

same size without increasing the vertex boundary. One can prove Harper’s Theorem by showing

that there is such a sequence that transforms any family into an initial segment of the simplicial

order. As it applies to any family, it may at first seem hopeless to obtain any structural information

from this process. However, for a suitably gradual sequence of transformations, we are able to use

the property of having small vertex boundary to keep track of the structure of families under the

reversal of the compressions. A key tool in this analysis is a local stability result showing that sets

with small vertex boundary that are reasonably close to an extremal example must in fact be very

close to an extremal example; thus we can rule out a possible cumulative effect of a sequence of

small adjustments from the compressions.

The organisation of this paper is as follows. In the next section we collect various technical esti-

mates concerning binomial coefficients that will be used throughout the paper. We prove stability

for Kruskal–Katona in section 3 and for Harper’s Theorem in section 4. The applications are given

in section 5, and the final section contains some concluding remarks.

Notation. We write P(S) for the power set (set of subsets) of a set S. Throughout we identify

P[n] with {0, 1}n, where a set A corresponds to its characteristic vector. We also write
(
S
k

)
= {A ⊂

S : |A| = k}. The complement of A ⊂ [n] is Ac := [n] \ A. For x ∈ A we write A − x = A \ {x}.
For x ∈ Ac we write A+ x = A ∪ {x}. Given integers m < n we write [m,n] := {m,m+ 1, . . . , n}
and let [n] := [1, n]. We let a± b denote some unspecified real number between a− b and a+ b.
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2 Estimates

This section contains various properties of and estimates for binomial coefficients that will be used

throughout the paper. We start by stating some simple formulae and inequalities for easy reference,

which will henceforth be used without comment:(
x
k

)
=
(
x−1
k

)
+
(
x−1
k−1
)
,

(
x−1
k

)(
x
k

)−1
= x−k

x ,
(
x
k−1
)(
x
k

)−1
= k

x−k+1 ,(
x−1
k−1
)(
x
k

)−1
= k

x ,
(
x−2
k−1
)(
x
k

)−1
= k(x−k)

x(x−1) ≤
x

4(x−1) ,(
x−1
k−1
)

= (x−1)(x−2)
(k−1)(x−k)

(
x−3
k−2
)
, k(x−k)

x2

(
x−1
k−1
)

= k(x−1)(x−2)
(k−1)x2

(
x−3
k−2
)
≤ 2
(
x−3
k−2
)

if x ≥ k + 1.

Next we give two lemmas concerning approximations of
(
x
k

)
by
(
y
k

)
. We omit the straightforward

proof of the first of these.

Lemma 2.1. For x ≥ y > k − 1 we have (xy )k ≤
(
x
k

)(
y
k

)−1
=
∏k−1
i=0

x−i
y−i ≤ (x−k+1

y−k+1 )k. Therefore

(i) if y > k − 1 and x ≥ (1 + θ)y with θ ≥ 0 then
(
x
k

)
≥ (1 + θ)k

(
y
k

)
,

(ii) if y ≥ (1 + α)k with α > 0 and
(
x
k

)
≥ (1 + θ)

(
y
k

)
with θ ∈ [0, 1] then x ≥

(
1 + αθ

2k(1+α)

)
y.

Lemma 2.2. Suppose k ≥ 2, x ≥ y > k − 1, 0 < c < 1/2 and
(
x
k

)
= (1 ± c)

(
y
k

)
. Then

(
x−1
k−1
)

=

(1± c)
(
y−1
k−1
)
,
(
x−1
k

)
= (1± y+k

y−k c)
(
y−1
k

)
(if y > k) and

(
x+1
k

)
= (1± c)

(
y+1
k

)
.

Proof. Note that
(
x−1
k−1
)(
y−1
k−1
)−1

=
∏k−1
i=1

x−i
y−i ≥ 1 as x ≥ y, and

(
x−1
k−1
)(
y−1
k−1
)−1

=
(
x
k

)(
y
k

)−1 y
x ≤ 1 + c.

We deduce
(
x−1
k

)
=
(
x
k

)
−
(
x−1
k−1
)

= (1±c)
(
y
k

)
−(1±c)

(
y−1
k−1
)

=
(
y−1
k

)
±c
(
y
k

)
±c
(
y−1
k−1
)

= (1± y+k
y−k c)

(
y−1
k

)
.

Similarly,
(
x+1
k

)
≥
(
y+1
k

)
and

(
x+1
k

)(
y+1
k

)−1
=
(
x
k

)(
y
k

)−1 (x+1)(y+1−k)
(y+1)(x+1−k) ≤ 1 + c as (x+ 1)(y + 1− k) ≤

(y + 1)(x+ 1− k). 2

The remainder of this section is mostly concerned with properties of the following functions.

For k ∈ N we define fk : [0,∞)→ [1,∞) and gk : (k − 1,∞)→ (0,∞) by

fk(
(
x
k

)
) =

(
x
k−1
)

for x ≥ k − 1 and gk(x) =

k−1∑
i=0

(x− i)−1.

Note that f1(t) = 1 for all t ≥ 0 and
(
x
k

)
gk(x) is the derivative of

(
x
k

)
with respect to x. As(

x
k

)
gk(x) ≥

(
x
k

)
k
x =

(
x−1
k−1
)
, by the Mean Value Theorem we have(

x+c
k

)
≥
(
x
k

)
+ c
(
x−1
k−1
)

for all c ≥ 0. (3)

The most important feature of fk for our purposes is that it is concave, and that we have an

effective estimate for its second derivative, as follows.

Lemma 2.3. If k ≥ 2, x > k − 1 and t =
(
x
k

)
then

f ′k(t) =
kgk−1(x)

(x− k + 1)gk(x)
, f ′′k (t) =

k(g′k−1(x)− gk−1(x)2)

t(x− k + 1)2gk(x)3
,

and if x ≥ k − 1 + α with α > 0 then −f ′′k (t) > ((2 + α−1)2(x− k + 1)t)−1.

Proof. Differentiating the identity fk(t) =
(
x
k−1
)

with respect to x gives f ′k(t)tgk(x) =
(
x
k−1
)
gk−1(x),

and hence the stated formula for f ′k(t). Substituting gk−1(x) = gk(x)− (x− k+ 1)−1 and differen-

tiating again gives

f ′′k (t)tgk(x) =
k
(
2gk(x) + (x− k + 1)(g′k(x)− gk(x)2)

)
(x− k + 1)3gk(x)2

.
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To deduce the stated formula for f ′′k (t) we need to show

2gk(x) + (x− k + 1)(g′k(x)− gk(x)2) = (x− k + 1)(g′k−1(x)− gk−1(x)2).

Using g′k−1(x) = g′k(x)+(x−k+1)−2 and gk(x)2−gk−1(x)2 = (gk(x)−gk−1(x))(gk(x)+gk−1(x)) =

(x − k + 1)−1(gk(x) + gk−1(x)) reduces this to the identity gk(x) = gk−1(x) + (x − k + 1)−1, so

the formula is valid. To see the final statement, we first note that g′k−1(x) = −
∑k−2
i=0 (x− i)−2 < 0

since k ≥ 2 and (x− k + 1)−1 ≤ (1 + α−1)(x− k + 2)−1, so gk(x) ≤ (2 + α−1)gk−1(x). Thus

−f ′′k (t) > k((2 + α−1)2(x− k + 1)2gk(x)t)−1,

which with (x− k + 1)gk(x) ≤ k gives the required bound. 2

Next we record a simple consequence of the concavity shown in the previous lemma.

Lemma 2.4. Suppose x ≥ ` ≥ 2 and 0 ≤ z ≤
(
x−1
`−1
)
. Then q(z) := f`(

(
x
`

)
− z) + f`−1(z) ≥

(
x
`−1
)
.

Proof. Note that q is concave by Lemma 2.3 with q(
(
x−1
`−1
)
) =

(
x−1
`−1
)

+
(
x−1
`−2
)

=
(
x
`−1
)

and q(0) =(
x
`−1
)

+ 1. The lemma follows. 2

In the following two lemmas we show how an estimate for the second derivative of a concave

function f translates into an effective estimate for certain differences of the form (f(y) + f(z)) −
(f(a) + f(b)) where a ≤ y ≤ z ≤ b with y + z = a+ b.

Lemma 2.5. Suppose g : [a, b]→ R is concave and non-negative and −g′′(t) ≥ m for t ∈ [a, c] with

c = a+ w ≤ (a+ b)/2. Then g(a+ d) ≥ dwm/4 for d ∈ [0, c− a].

Proof. By Taylor’s theorem, we have a ≤ t1 ≤ c ≤ t2 ≤ b with

0 ≤ g(a) = g(c)− wg′(c) + 1
2w

2g′′(t1), and

0 ≤ g(b) = g(c) + (b− c)g′(c) + 1
2 (b− c)2g′′(t2), so

0 ≤ (b− c)
(
g(c)− wg′(c) + 1

2w
2g′′(t1)

)
+ w

(
g(c) + (b− c)g′(c) + 1

2 (b− c)2g′′(t2)
)

≤ (b− a)g(c) + b−a
4 w2g′′(t1) ≤ (b− a)(g(c)− w2m/4).

By concavity, g(a+ d) ≥ d
wg(c) ≥ dwm/4, as required. 2

Lemma 2.6. Let f : [a, b]→ R be concave with −f ′′(t) ≥ m for t ∈ [a, a+ w] with w ≤ (b− a)/2.

Suppose a ≤ y ≤ z ≤ b with y+z = a+ b and f(y)+f(z) < f(a)+f(b)+Φ. Then y−a ≤ 4Φ/mw.

Proof. Define g(t) = f(t) − h(t) where h is the linear function with h(a) = f(a) and h(b) = f(b).

Then g is concave and non-negative, g(a) = g(b) = 0, g′′(t) = f ′′(t) and g(y) ≤ g(y) + g(z) < Φ.

Also g(y) ≥ (y − a)wm/4 by Lemma 2.5, so y − a ≤ 4Φ/mw. 2

Now we state some specific instances of Lemma 2.6 (using Lemma 2.3) that will be used later

in the paper.

Lemma 2.7. Let n ≥ x ≥ ` ≥ 2.

(i) Suppose y, z ∈ N satisfy 0 ≤ y ≤ z ≤
(
n
`

)
, with

(
n
`

)
≥ y + z = X ≥

(
n
`

)
− 1

4

(
x
`

)
and

f`(y) + f`(z) < 1 + f`(X) + c
x

(
x
`−1
)
. Then y ≤ 400c

(
x−1
`−1
)
.

(ii) Suppose y, z ∈ N with 0 ≤ y ≤ z ≤
(
n
`

)
, with y + z =

(
n
`

)
+ E, where 0 < E < 1

4

(
x
`

)
, and

f`(y) + f`(z) < f`(E) +
(
n
`−1
)

+ c
x

(
x
`−1
)
. Then y ≤ E + 400c

(
x−1
`−1
)
.
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(iii) Suppose (1 + θ)
(
x
`

)
≤
(
n
`

)
,
(
x
`

)
≤ y ≤ z ≤

(
n
`

)
with y + z =

(
x
`

)
+
(
n
`

)
and f`(y) + f`(z) <(

x
`−1
)

+
(
n
`−1
)

+ c
x

(
x
`

)
. Then y ≤

(
x
`

)
+ 72cθ−1

(
x−1
`−1
)
. Furthermore, if

(
x
`

)
<
(
n−1
`

)
+ 1

2

(
n−1
`−1
)

and f`(y) + f`(z) <
(
x
`−1
)

+
(
n
`−1
)

+ c′`(x−`)
x3

(
x
`−1
)

then y ≤
(
x
`

)
+ 250c′

(
x−3
`−2
)
.

Proof. For (i), let a = 1
2 , b = X − 1

2 and note that 1 + f`(X) ≤ f`(a) + f`(b) by concavity,

so f`(y) + f`(z) < f`(a) + f`(b) + Φ, where Φ = c
x

(
x
`

)
. Applying Lemma 2.6 with w = 1

3

(
x
`

)
and

m = (16(x−`+1)
(
x
`

)
)−1 (by Lemma 2.3 with α = 1

2 ) gives y−a ≤ 4Φ/mw ≤ 4 cx
(
x
`−1
)
·48(x−`+1) ≤

200c
(
x−1
`−1
)
. Now if 1

2 ≤ 200c
(
x−1
`−1
)

this gives y ≤ 400c
(
x−1
`−1
)
. Otherwise y < 1

2 +200c
(
x−1
`−1
)
< 1 giving

y = 0 < 400c
(
x−1
`−1
)

by integrality. The proof of (ii) is the same, using b =
(
x
`

)
+E−a. Similarly, for

(iii), applying Lemma 2.6 with a =
(
x
`

)
, b =

(
n
`

)
, Φ = c

x

(
x
`

)
, w = θ

2

(
x
`

)
and m = (9(x− `+ 1)

(
x
`

)
)−1

(taking α = 1) gives y − a ≤ 72cθ−1
(
x−1
`−1
)
. For the ‘furthermore’ statement, we apply this bound

with c = c′`(x−`)
x3

(
x
`−1
)
x
(
x
`

)−1 ≤ c′`2

x2 , noting that
(
n
`

)
≥
(
x
`

)
+ 1

2

(
n−1
`−1
)

=
(
x
`

)
+ `

2(n−`)
(
n−1
`

)
≥ (1+θ)

(
x
`

)
with θ = `

3(x−`) . 2

Next we give a similar statement to that of the previous lemma for certain sums involving both

fk and fk−1.

Lemma 2.8. Let x ≥ k ≥ 3, X =
(
x−1
k

)
and Y =

(
x−1
k−1
)
. Suppose 0 ≤ y ≤ Y with fk(X + y) +

fk−1(Y − y) <
(
x
k−1
)

+ c
x

(
x
k−1
)
. Then y /∈ [600cY, (1 − 600c)Y ]. Furthermore, if x ≥ k + 1 then

y /∈ [107c
(
x−2
k−1
)
, (1− 600c)Y ].

Proof. Let ek : [X,X + Y ]→ R and ek−1 : [0, Y ]→ R be the linear functions with ek(X) =
(
x−1
k−1
)
,

ek(X + Y ) =
(
x
k−1
)
, ek−1(0) = 0 and ek−1(Y ) =

(
x−1
k−2
)
. Note that

ek(X + y) + ek−1(Y − y) =
(
x−1
k−1
)

+ y
Y (
(
x
k−1
)
−
(
x−1
k−1
)
) + (1− y

Y )
(
x−1
k−2
)

=
(
x
k−1
)
.

Let hk = fk − ek and hk−1 = fk−1 − ek−1. Then hk and hk−1 are concave and non-negative, with

hk(X) = hk(X + Y ) = hk−1(Y ) = 0, hk−1(0) = 1 and hk(X + y) + hk−1(Y − y) < c
x

(
x
k−1
)
.

Next note that
(
k−2+1/4
k−1

)
≤ 1/4 ≤ Y/4, so Lemma 2.3 with α = 1/4 gives −h′′k−1(t) ≥ m =

(18(x − k + 1)Y )−1 for t ∈ [Y/4, Y/2]. Applying Lemma 2.5 with a = d = w = Y/4 and b = Y

gives hk−1(Y/2) ≥ (Y/4)2m/4 = (1152(x− k + 1))−1Y . By concavity, for z ∈ [600cY, (1− 600c)Y ]

we have hk−1(z) ≥ 1200chk−1(Y/2) > c
x

(
x
k−1
)
> hk−1(Y − y), so y /∈ [600cY, (1− 600c)Y ].

For the ‘furthermore’ statement, we can assume x < (1 + γ)k, with γ := e−9, as otherwise Y =
x−1
x−k

(
x−2
k−1
)
≤ 1+γ

γ

(
x−2
k−1
)
, so 600cY < 107c

(
x−2
k−1
)
. Let E = 1

2

(
x−2
k−1
)

and define ξ by X + E =
(
x−1+ξ
k

)
,

so 0 < ξ ≤ 1
2 by (3). We claim that h′k(X + E) ≥ x

12(x−k+1/2)(x−k+1) .

First we assume the claim and complete the proof. We have h′k(X+z) ≥ h′k(X+E) for z ∈ [0, E],

so hk(E) ≥ xE
12(x−k+1/2)(x−k+1) ≥

1
18x

(
x
k−1
)
. Then by concavity hk(X + z) > c

x

(
x
k−1
)
> hk(X + y)

for all z ∈ [107c
(
x−2
k−1
)
, Y/2], so y /∈ [107c

(
x−2
k−1
)
, (1− 600c)Y ].

To prove the claim, we note that ek has gradient
((

x
k−1
)
−
(
x−1
k−1
))((

x
k

)
−
(
x−1
k

))−1 ≤ k
x−k+1 , so

by Lemma 2.3

f ′k(X + E)− e′k(X + z) ≥ k

x− k + ξ

(
1− 1

(x− k + ξ)gk(x− 1 + ξ)

)
− k

x− k + 1

=
k(1− ξ)

(x− k + ξ)(x− k + 1)
− k

(x− k + ξ)2gk(x− 1 + ξ)

≥ 1

x− k + ξ

( x

3(x− k + 1)
− k

(x− k + ξ)gk(x− 1 + ξ)

)
, (4)
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as k(1− ξ) ≥ x
2(1+γ) ≥

x
3 . As x ≥ k + 1 we have x− k + ξ ≥ (x− k + 1)/2 and x ≤ (1 + γ)k gives

log
(
x−1+ξ
x−k+ξ

)
≥ log

(
1+γ
γ

)
≥ 8. Thus

x(x− k + ξ)gk(x− 1 + ξ) ≥ x(x− k + ξ) log
(
x−1+ξ
x−k+ξ

)
≥ 4k(x− k + 1).

In combination with (4) this proves the claim, and so the lemma. 2

We conclude this section with a technical lemma needed in the next section.

Lemma 2.9. Let k ≥ 3. Define φ : [1, k+ 1]→ R by φ(t) = k− t−1
2 −

k
x−k+1 , where k ≤ x ≤ k+ 1

with
(
x
k

)
= t. Then φ(1) = φ(k + 1) = 0, φ is concave, and φ(2) > 3

4 .

Proof. We have φ(1) = k − 1−1
2 −

k
k−k+1 = 0 and φ(k + 1) = k − k+1−1

2 − k
k+1−k+1 = 0. Also,

t(x) =
(
x
k

)
is a convex function of x, so has a concave inverse x(t), so −1/x(t) is concave, so φ is

concave. To estimate φ(2), we let θ ∈ (0, 1) be such that
(
k+θ
k

)
= 2, and apply the Mean Value

Theorem to get 2 =
(
k+θ
k

)
≤ θ
(
k+θ
k

)
gk(k + θ) ≤ 2θ log k+1+θ

1+θ ≤ 2θ log(k + 1), so θ ≥ 1/ log(k + 1).

Then φ(2) ≥ k − 1
2 −

k
1+1/ log(k+1) = k

1+log(k+1) −
1
2 ≥

3
1+log(4) −

1
2 >

3
4 . 2

3 Stability for the Kruskal–Katona theorem

In this section we prove Theorem 1.2. We start by recording some basic properties of shadows that

will be used throughout the paper.

Lemma 3.1. Let s, k ∈ N with s ≥ k, m =
(
s
k

)
, m′ =

(
s−1
k

)
and 0 ≤ E1, E2 ≤

(
s−1
k−1
)
. Then

(i) ∂(I(k)m′+E1
) =

(
[s−1]
k−1

)
∪ ((∂I(k−1)E1

) + s).

(ii) ∂(I(k)m+E2
\ I(k)m ) = I(k−1)E2

∪ ((∂I(k−1)E2
) + (s+ 1)).

(iii) ∂(J (k)
s,E1,E2

) = ∂(I(k)m′+E1
) ∪ ((∂I(k−1)E2

) + (s+ 1)).

(iv) |∂(I(k)a+b)| ≤ |∂(I(k)a )|+ |∂(I(k)b )|, with strict inequality if k ≥ 2 and a ≥ b > 0.

Proof. Statements (i) and (ii) are clear, and imply (iii), recalling from (1) the definition of J (k)
s,E1,E2

and noting that I(k−1)E2
⊂
(
[s−1]
k−1

)
. For (iv), let A be the union of copies of I(k)a and I(k)b on disjoint

vertex sets. Then |∂(I(k)a )| + |∂(I(k)b )| = |∂(A)| ≥ |∂(I(k)a+b)| by Kruskal–Katona. If equality holds

then the vertex sets satisfy |V (I(k)a+b)| = |V (I(k)a )|+ |V (I(k)b )| by [19, Corollary 2.2]. However, this

is impossible for k ≥ 2 and a ≥ b > 0. To see this, consider A′ obtained from A by deleting some

v ∈ V (I(k)b ), say of degree d, and adding d sets A ∪ {u} with A ∈
(
V (I(k)

a )
k−1

)
and u ∈ V (I(k)b ) \ {v}.

Then |A′| = |A| and |V (A)| > |V (A′)| ≥ |V (I(k)a+b)|. 2

Next we show local stability, i.e. a sharp estimate for the shadow of families that are close to a

clique.

Lemma 3.2. Let A ⊂
(
[n]
k

)
, s ∈ [n], A1 = A ∩

(
[s]
k

)
and A2 = A \ A1. Suppose |A1| =

(
s−1
k

)
+ E1

and |A2| = E2, with 0 ≤ E1, E2 ≤
(
s−1
k−1
)
. Then |∂(A)| ≥ |∂(J (k)

s,E1,E2
)|.

Proof. For s < t ≤ n let At2 be the set of all A− t ∈
(

[n]
k−1
)

where A ∈ At2 with maxA = t. Then

|∂(A)| ≥ |∂(A1)|+
∑
t>s

|∂(At2)| ≥ |∂(I(k)|A1|)|+
∑
t>s

|∂(I(k−1)|At
2|

)| ≥ |∂(I(k)|A1|)|+|∂(I(k−1)|A2| )| = |∂(J (k)
s,E1,E2

)|,

using Kruskal–Katona, then Lemma 3.1.iv, and finally Lemma 3.1.iii. 2
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Now we describe the compression operations that will be used throughout the paper. Given

disjoint sets U, V ⊂ [n], the CU,V compression of a set A ⊂ [n] is given by

CU,V (A) :=

{
(A \ U) ∪ V if U ⊂ A and V ∩A = ∅;
A otherwise.

Given a family A ⊂ {0, 1}n the CU,V compression of A, denoted CU,V (A), is given by

CU,V (A) :=
{
CU,V (A) : A ∈ A

}
∪
{
A : CU,V (A) ∈ A

}
.

The following result, essentially due to Daykin [5] (see also [1, 2, 15]) shows that for any A ⊂
(
[n]
k

)
there is a sequence of (U, V )-compressions which compress A to an initial segment of colex with

the property that successive compressions do not increase the shadow (in particular this proves

Kruskal–Katona).

Theorem 3.3. Let A ⊂
(
[n]
k

)
with |A| = m. Then there is a sequence {(Ui, Vi)}i∈[L] where

Ui, Vi ⊂ [n] are disjoint with |Ui| = |Vi| for all i ∈ [L], such that defining A0 = A and iteratively

Ai := CUi,Vi(Ai−1) for i ∈ [L], each |∂(Ai)| ≤ |∂(Ai−1)| and AL = I(k)m .

As discussed in the introduction, our proof of Theorem 1.2 analyses the reversal of the above

compressions. To do so, in each decompression step in which we might in theory lose control on

the distance from a clique, we will apply the following lemma which shows that this control is in

fact maintained.

Lemma 3.4. Given k ∈ N, δ ∈ (0, 1) and c = 10−8δ, if A ⊂
(
[n]
k

)
with |A| =

(
x
k

)
and |∂(A)| ≤

(1 + c
x )
(
x
k−1
)

then

(i)
∣∣|A| − (Mk )∣∣ ≤ δ

2

(
M−1
k−1

)
for some M ∈ {bxc, dxe},

(ii) if |
(
S
k

)
\ A| ≤ (1− δ)

(
M−1
k−1

)
with |S| = M as (i) then |

(
S
k

)
\ A| ≤ δ

(
M−1
k−1

)
.

Proof. The case k = 1 is trivial. Next we consider k = 2. Let M = |∂(A)|. Then x ≤ M ≤
(1 + c

x )
(
x
1

)
= x+ c and |A| =

(
M±c

2

)
=
(
M
2

)
± δ(M − 1), so (i) holds. For (ii), let A′ = A∩

(
S
k

)
, and

note that |A′| >
(
M−1

2

)
. Then ∂A′ = S = ∂A by Kruskal–Katona, so |

(
S
k

)
\ A| = 0. Thus we may

assume k ≥ 3. We write |A| =
(
x
k

)
= X + Y with X =

(
x−1
k

)
and Y =

(
x−1
k−1
)
.

Next we assume (i) holds and prove (ii). Write A1 = A∩
(
S
k

)
, A2 = A\A1, |A1| =

(
M−1
k

)
+E1

and |A2| = E2. We have 0 ≤ E1 ≤
(
M
k

)
−
(
M−1
k

)
=
(
M−1
k−1

)
and 0 ≤ E2 ≤ |

(
S
k

)
\A|+ δ

2

(
M−1
k−1

)
≤ (1−

δ
2 )
(
M−1
k−1

)
, so |∂(A)| ≥ |∂(J (k)

M,E1,E2
)| by Lemma 3.2. By the Lovász version of the Kruskal–Katona

theorem and Lemma 3.1.iii we deduce fk(
(
M−1
k−1

)
+E1) + fk−1(E2) < (1 + c

x )
(
x
k−1
)
. With notation

as in Lemma 2.8, writing E2 = Y − y we have
(
M−1
k−1

)
+ E1 = X + y, so y /∈ [600cY, (1 − 600c)Y ].

As
(
x
k

)
= |A| =

(
M
k

)
± δ

2

(
M−1
k−1

)
= (1± δ

2 )
(
M
k

)
, by Lemma 2.2 we have

(
x−1
k−1
)

= (1± 2δ)
(
M−1
k−1

)
. Then

y = Y − E2 ≥
(
x−1
k−1
)
− (1 − δ

2 )
(
M−1
k−1

)
> 600cY , so y > (1 − 600c)Y , giving E2 < 600cY , and so

|
(
S
k

)
\ A| ≤ E2 + δ

2

(
M−1
k−1

)
< δ
(
M−1
k−1

)
, as required.

It remains to prove (i) for k ≥ 3. We now consider the case x < k+ 1, so 1 ≤ m := |A| ≤ k+ 1.

We can assume m ≥ 2, or (i) holds with M = k. Note that I(k)m = {[k + 1] \ {i} : i ∈ [m]} and

∂(I(k)m ) = {[k+1]\{i, j} : {i, j}∩[m] 6= ∅}, so by Kruskal–Katona, |∂(A)| ≥ |∂(I(k)m )| = mk−
(
m
2

)
. By

hypothesis, |∂(A)| ≤ (1+ c
x )
(
x
k−1
)
, where

(
x
k−1
)

= km
x−k+1 , so mφ(m) ≤ c

x

(
x
k−1
)
, with φ as in Lemma

2.9. By concavity, for t ∈ [2, k+ 1− δk] we have tφ(t) ≥ tφ(2) δk
k−1−δk ≥

3δ
4

(
x
k

)
≥ 3δ

4x

(
x
k−1
)
> c

x

(
x
k−1
)
.

Thus m > k + 1− δ
(
k
k−1
)
, i.e. (i) holds with M = k + 1 in this case.

Continuing with the proof of (i), we can assume k ≥ 3 and x ≥ k + 1. Let M0 = bxc and

y =
(
M0

k

)
− X, so |A| = (X + y) + (Y − y) =

(
M0

k

)
+ (Y − y). We can assume y ≥ 1, otherwise

(i) holds. By Kruskal–Katona, Lemma 3.1.i and the Lovász form of Kruskal–Katona we have
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|∂A| ≥ |∂(I(k)(M0

k

)
+Y−y

)| =
(
M0

k−1
)

+ |∂I(k−1)Y−y | ≥ fk(X + y) + fk−1(Y − y). By hypothesis, |∂(A)| ≤

(1 + c
x )
(
x
k−1
)
, so Lemma 2.8 gives y /∈ [107c

(
x−2
k−1
)
, (1− 600c)

(
x−1
k−1
)
].

Consider the case y > (1−600c)
(
x−1
k−1
)
. We have

(
M0

k

)
= X+y =

(
x
k

)
±600c

(
x−1
k−1
)

= (1±600c)
(
x
k

)
,

so
(
M0−1
k−1

)
= (1± 2400c)

(
x−1
k−1
)

by Lemma 2.2, so with M = M0 we have(
M
k

)
=
(
x
k

)
± 600c(1± 2400c)−1

(
M−1
k−1

)
=
(
x
k

)
± 104c

(
M−1
k−1

)
.

It remains to consider y < 107c
(
x−2
k−1
)
. Then

(
M0

k

)
= X + y =

(
x−1
k

)
± 107c

(
x−2
k−1
)

= (1± 107c)
(
x−1
k

)
,

as x ≥ k + 1. By Lemma 2.2 we have
(
M0−1
k−1

)
= (1 ± 107c)

(
x−2
k−1
)
, so

(
M0

k−1
)

=
(
M0

k

)
−
(
M0−1
k−1

)
=(

x−1
k

)
± 107c

(
x−2
k−1
)
− (1 ± 107c)

(
x−2
k−1
)

=
(
x−1
k−1
)
± 2 · 107c

(
x−2
k−1
)
. Taking M = M0 + 1 we have(

M
k

)
=
(
M0

k

)
+
(
M0

k−1
)

=
(
x−1
k

)
± 107c

(
x−2
k−1
)

+ (1± 2 · 107c)
(
x−1
k−1
)

=
(
x
k

)
± δ

2

(
M−1
k−1

)
. 2

We conclude this section by proving our stability result for Kruskal–Katona.

Proof of Theorem 1.2. Suppose δ0 > 0, let δ = min( 1
8 ,

δ0
3 ) and c = 10−8δ. Suppose A ⊂

(
[n]
k

)
with

|A| = m =
(
x
k

)
and |∂(A)| ≤ (1 + c

x )
(
x
k−1
)
. We can assume m ≥ 1, so x ≥ k. By Lemma 3.4.i there

is M ∈ {bxc, dxe} with
∣∣|A| − (Mk )∣∣ ≤ δ

2

(
M−1
k−1

)
. Let {(Ui, Vi)}i∈[L] be the sequence of compressions

provided by Theorem 3.3, so that AL = I(k)m and each |∂(Ai)| ≤ |∂(A)| ≤ (1+ c
x )
(
x
k−1
)
. We show by

induction on i with L ≥ i ≥ 0 that there is some Si ∈
(
[n]
M

)
with |

(
Si

k

)
\ Ai| ≤ δ

(
M−1
k−1

)
. As A0 = A,

this will prove the theorem, as we obtain
∣∣(S0

k

)
4A

∣∣ ≤ 3δ
(
M−1
k−1

)
≤ δ0

(
M−1
k−1

)
, and the ‘furthermore’

statement holds by Lemma 3.2.

As AL = I(k)m the base case holds with SL = [M ]. For the induction step, we suppose the

required statement for i and prove it for i − 1. Let Bj =
(
Si

k

)
\ Aj for j ∈ {i − 1, i}. The

induction hypothesis is |Bi| ≤ δ
(
M−1
k−1

)
. Note that if A ∈ Ai ∩

(
Si

k

)
and A /∈ Ai−1 ∩

(
Si

k

)
then

Vi ⊂ A ⊂ Si and so |Bi−1| ≤ |Bi|+
(
M−|Vi|
k−|Vi|

)
. In the case that

(
M−|Vi|
k−|Vi|

)
< (1−2δ)

(
M−1
k−1

)
this implies

|Bi−1| ≤ |Bi|+
(
M−|Vi|
k−|Vi|

)
< (1− δ)

(
M−1
k−1

)
. As |∂(Ai−1)| ≤ (1 + c

x )
(
x
k−1
)
, Lemma 3.4.ii improves this

bound to |Bi−1| ≤ δ
(
M−1
k−1

)
, so the induction step holds with Si−1 = Si.

It remains to consider the case that
(
M−|Vi|
k−|Vi|

)
≥ (1−2δ)

(
M−1
k−1

)
. If |Vi| ≥ 2 this implies 2δ(M−1) ≥

M−k. We may assume that Vi ⊂ Si and Ui 6⊂ Si as otherwise |Bi−1| ≤ |Bi| ≤ δ
(
M−1
k−1

)
. Let T0 = Si

and T1 = (Si \ Vi) ∪ Ui. We have |
(
Si\Vi

k

)
\ Ai| ≤ |

(
Si

k

)
\ Ai| ≤ δ

(
M−1
k−1

)
and

|
(
T1

k

)
\
(
Si\Vi

k

)
| ≤

(
M
k

)
−
(
M−|Vi|

k

)
=

|Vi|∑
i=1

(
M−i
k−1

)
≤
|Vi|∑
i=1

(
M−k
M−1

)i−1(
M−1
k−1

)
<
(
1 + 2δ

1−2δ
)(
M−1
k−1

)
,

using M−k
M−1 ≤ 2δ if |Vi| ≥ 2. As δ ≤ 1/8, this gives∣∣∣(T0

k

)
\ Ai−1

∣∣∣+
∣∣∣(T1

k

)
\ Ai−1

∣∣∣ ≤ ∣∣∣(T0

k

)
\ Ai

∣∣∣+
∣∣∣(Si\Vi

k

)
\ Ai

∣∣∣+
∣∣∣(T1

k

)
\
(
Si\Vi

k

)∣∣∣
<
(

1 + 2δ + 2δ
1−2δ

)(
M−1
k−1

)
< 2(1− δ)

(
M−1
k−1

)
.

Therefore |
(
Tj

k

)
\ Ai−1| < (1− δ)

(
M−1
k−1

)
for some j ∈ {0, 1}. As before, Lemma 3.4.ii improves this

to |
(
Tj

k

)
\ Ai−1| ≤ δ

(
M−1
k−1

)
, so the inductive step is complete with Si−1 := Tj . 2

4 Stability for the cube vertex isoperimetric inequality

In this section we will prove Theorems 1.1 and 1.3. Similarly to our stability result for Kruskal–

Katona, the proofs proceed by analyzing compression operators via local stability. We require
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the existence of a sequence of compressions that can transform any family A into some C that

is ‘ball-like’, meaning that
(

[n]
≥k+1

)
⊂ C ⊂

(
[n]
≥k
)

for some k. Similarly to before, we require these

compressions to maintain the size of the family and not increase the size of its vertex boundary.

We also require some further structural properties of the sequence: we always use compressions

CU,V with |V | = |U | + 1, and after some initial set of compressions C∅,{i} the family Ai is always

an upset, i.e. if A ∈ Ai and A ⊂ B then B ∈ Ai. The formal statement is as follows.

Theorem 4.1. Given A ⊂ {0, 1}n there are L0, L1 ∈ N with 0 ≤ L0 ≤ L1 and pairs of sets

{(Ui, Vi)}i∈[L1] so that, setting A0 = A and Ai := CUi,Vi
(Ai−1) for all i ∈ [L1], the following hold:

(i) Ui ∩ Vi = ∅ for all i ∈ [L1];

(ii) |Vi| = |Ui|+ 1 for all i ∈ [L1];

(iii) |Ui| = 0 for i ∈ [L0] and |Ui| ≥ 1 for i ∈ [L0 + 1, L1];

(iv) Ai is an upset for all i ∈ [L0, L1],

(v) |∂v(Ai)| ≤ |∂v(Ai−1)| for all i ∈ [L1];

(vi) AL1 =
(

[n]
≥k+1

)
∪ B where B ⊂

(
[n]
k

)
for some k.

It seems that Theorem 4.1 does not appear in the literature, although it is an easy extension of

known results (similar statements are given in [1, 2, 5, 15]), so rather than giving a complete proof

we will just briefly indicate why the required sequence of compressions exists:

• Given A ⊂ {0, 1}n, the family C∅,{i}(A) has the same size as A and has vertex boundary at

most that of A. Repeatedly applying such compressions for different i ∈ [n], we obtain an

upset with vertex boundary at most that of A.

• Given disjoint sets U, V ⊂ [n] with |U | < |V |, the family CU,V (A) has at least as many elements

of
(
[n]
≥k
)

as A. Furthermore, if A is not ball-like then there are disjoint sets U, V ⊂ [n] with

|V | = |U |+ 1 so that CU,V (A) is closer to a ball-like set.

• If CU ′,V ′(A) = A for all U ′ ⊂ U with |U ′| = |U | − 1 and V ′ ⊂ V with |V ′| = |V | − 1 then

|∂v(CU,V (A))| ≤ |∂v(A)| and CU,V (A) is closer to a ball-like set. Furthermore, if A is an upset

then so is CU,V (A).

From the above facts, Theorem 4.1 follows by repeatedly applying compressions CU,V to A where

|V | = |U |+ 1 is minimal with CU,V (A) 6= A. The proofs of Theorems 1.1 and 1.3 will analyze the

reversal of these compressions. In the next two subsections we will prove a local stability version

of Harper’s Theorem and collect various estimates that boost the accuracy of approximation by a

generalised Hamming ball for a family with small vertex boundary. In the third subsection we prove

a stability theorem for families of size close to a ball, which implies Theorem 1.1. The main result

in the fourth subsection allows us to reverse the compressions from Theorem 4.1 for i ≥ L0. In

particular, this will show that upsets with small vertex boundary are close to generalised Hamming

balls of the first type. The second type of generalised Hamming ball then appears under reversal

of the compressions for i ∈ [0, L0 − 1]; the analysis of these steps is given in the fifth subsection,

using the local stability theorem and the stability theorem for ball-sized sets. The final subsection

contains the proof of Theorem 1.3.

4.1 Local stability for the vertex isoperimetric inequality

The main result of this subsection is our local stability result for perturbations of a generalised

Hamming ball. Recall that Jm,D,E = Im−D ∪ (Im+E \ Im). For F ⊂ {0, 1}n and i ≥ 0 we define

the iterated neighbourhoods N i(F) by N0(F) = F and N i+1(F) = N i(F) ∪ ∂v(N i(F)). We start

with some identities for the vertex boundary and iterated neighbourhoods of Jm,D,E .
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Lemma 4.2. Let n ≥ t ≥ k ≥ i, 0 ≤ D,E ≤
(
t−1
k−1
)

and m =
(

[n]
≥k+1

)
+
(
t
k

)
. Then |N i(Jm,D,E)|+

|N i(Im)| = |N i(Im−D)|+ |N i(Im+E)|, so |∂v(Jm,D,E)|+ |∂v(Im)| = |∂v(Im−D)|+ |∂v(Im+E)|.

Proof. The statement on vertex boundaries is equivalent to that on neighbourhoods with i = 1.

Writing T =
(
t
k

)
, we have

|N i(Im−D)| =
(

n
≥k+1−i

)
+ |∂i(I(k)T−D)|,

|N i(Im+E)| =
(

n
≥k+1−i

)
+
(
t
k−i
)

+ |∂i(I(k−1)E )|,

|N i(Im)| =
(

n
≥k+1−i

)
+
(
t
k−i
)
, and

|N i(Jm,D,E)| =
(

n
≥k+1−i

)
+ |∂i(I(k)T−D)|+ |∂i(I(k−1)E )|.

The lemma follows. 2

Now we prove our local stability result. The main task of the proof is to establish a submodu-

larity property for (iterated) neighbourhoods that may have independent interest.

Lemma 4.3. Suppose A,G ⊂ {0, 1}n. Let A− = A ∩ G and A+ = A ∪ G. For any i ≥ 0 we have

|N i(A)|+ |N i(G)| ≥ |N i(A−)|+ |N i(A+)|, so |∂v(A)|+ |∂v(G)| ≥ |∂v(A−)|+ |∂v(A+)|.
Suppose also G is a generalised Hamming ball, namely G =

(
[n]
≥`+1

)
∪
(
[t]
`

)
with ` ≤ t ≤ n, or

G =
(

[n]
≥`+1

)
∪
(
[t−1]
`

)
∪
(
[t−1]
`−1
)

with `+1 ≤ t ≤ n−1. Write m =
(

n
≥`+1

)
+
(
t
`

)
, |A−| = |G|−D, |A+| =

|G|+ E and suppose D,E ≤
(
t−1
`−1
)
. Then |N i(A)| ≥ |N i(Jm,D,E)|, so |∂v(A)| ≥ |∂v(Jm,D,E)|.

Proof. As |A| + |G| = |A−| + |A+|, the statement on vertex boundaries is equivalent to that on

neighbourhoods with i = 1. Let E = N i(A+)\ (N i(A)∪G). Then |N i(A+)\G| ≤ |N i(A)\G|+ |E|,
so

|N i(A) \ G| ≥ |N i(A+) \ G| − |E| = |N i(A+)| − |G| − |E|, (5)

as G ⊂ A+. Next we observe that E ⊂ N i(G)\G (as N i(A+) = N i(A)∪N i(G)) and N i(A−)∩E = ∅
(as N i(A−) ⊂ N i(A)), so |N i(A−) ∩ (N i(G) \ G)| ≤ |N i(G)| − |G| − |E|. We deduce

|N i(A)∩G| ≥ |N i(A−)∩G| = |N i(A−)|−|N i(A−)∩(N i(G)\G)| ≥ |N i(A−)|+|G|+|E|−|N i(G)|. (6)

Combining (5) with (6) gives

|N i(A)| = |N i(A) ∩ G|+ |N i(A) \ G| ≥ |N i(A−)|+ |N i(A+)| − |N i(G)|,

which is the first statement of the lemma. Now

|∂v(A)| ≥ |∂v(Im−D)|+ |∂v(Im+E)| − |∂v(G)| = |∂v(Jm,D,E)|,

by Harper’s Theorem applied to A+ and A− and then Lemma 4.2. 2

We conclude this subsection by showing how the local stability obtained in the previous lemma

allows us to boost the accuracy of approximation by a generalised Hamming ball for a family with

small vertex boundary.

Lemma 4.4. Let δ ∈ (0, 1), c = 10−9δ and A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
, and

(
x
k

)
=(|S|

k

)
± δ

5

(|S|−3
k−2

)
, where 2 ≤ k ≤ |S| ≤ n − 1. Suppose |∂v(A)| ≤ Blov(|A|) + ck(x−k)

x3

(
x
k−1
)

and

|A \ G| ≤
(|S|−1
k−1

)
− δ
(|S|−3
k−2

)
for some generalised Hamming ball G with |G| =

(
n
≥k+1

)
+
(|S|
k

)
. Then

|A4G| ≤ δ
(|S|−3
k−2

)
.
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Proof. We apply Lemma 4.3 to A and G, which gives |∂v(A)| ≥ |∂v(Jm,D,E)|, where m =
(

n
≥k+1

)
+(|S|

k

)
, D = |G \ A| and E = |A \ G|. Note that E ≤

(|S|−1
k−1

)
− δ

(|S|−3
k−2

)
and |∂v(Jm,D,E)| =(

n
k

)
−
(
x
k

)
+ |∂(J (k)

|S|,E′,E)|, where E′ =
(|S|−1
k−1

)
−D. Our assumed upper bound on |∂v(A)| implies

|∂(J (k)
|S|,E′,E)| ≤

(
1 + ck(x−k)

x3

)(
x
k−1
)
. By Lemma 3.4.ii, applied with ck(x−k)

x2 in place of c, we obtain

D = |
(
S
k

)
\ J (k)
|S|,E′,E | ≤

δ
5

(|S|−3
k−2

)
, and so |A4G| ≤ δ

(|S|−3
k−2

)
. 2

4.2 Boosting approximations

In this subsection we collect several further lemmas for boosting approximations under the as-

sumption of small vertex boundary. We start by quantifying the defect in (2) for families that are

somewhat close to a generalised Hamming ball.

Lemma 4.5. Let n ≥ t ≥ ` ≥ 2, and let G be a generalised Hamming ball of size m =
(

n
≥`+1

)
+
(
t
`

)
.

Suppose A ⊂ {0, 1}n and |A| =
(

n
≥`+1

)
+
(
t−1
`

)
+E1+E2 with |A\G| = E2, where 1 ≤ E1, E2 ≤

(
t−1
`−1
)
.

Set Emin := max(0, E1 + E2 −
(
t−1
`−1
)
) and Emax := min(E1 + E2,

(
t−1
`−1
)
). Then

|∂v(A)| − Blov(|A|) ≥ Φ :=
(
f`−1(E1) + f`−1(E2)

)
−
(
f`−1(Emin) + f`−1(Emax)

)
.

Proof. Note that E1 +E2 = Emin+Emax and Emin ≤ E1, E2 ≤ Emax. Lemma 4.3 gives |∂v(A)| ≥
|∂v(Jm,D,E2

)| with D =
(
t−1
`−1
)
− E1. Writing m′ =

(
n
≥`+1

)
+
(
t−1
`

)
, we have Jm,D,E2

= Im′+E1
∪(

Im+E2
\ Im

)
and

|∂v(Jm,D,E2
)| = |∂v(Im′)|+ |∂(I(`−1)E1

)|+ |∂(I(`−1)E2
)| −

(
E1 + E2

)
≥ |∂v(Im′)|+ f`−1(E1) + f`−1(E2)−

(
E1 + E2

)
= |∂v(Im′)|+ f`−1(Emin) + f`−1(Emax) + Φ−

(
Emin + Emax

)
,

where the inequality holds by the Lovász form of Kruskal–Katona applied to I(`−1)E1
and I(`−1)E2

. As

|∂v(Im′)| =
(
n
`

)
−
(
t−1
`

)
+ f`(

(
t−1
`

)
), it remains to show

Ψ :=
(
n
`

)
+ f`(

(
t−1
`

)
) + f`−1(Emin) + f`−1(Emax)−

((
t−1
`

)
+ Emin + Emax

)
≥ Blov(|A|).

We prove this inequality according to the cases Emin = 0 or Emax =
(
t−1
`−1
)

(one of which must

hold).

First consider Emin = 0. Then Emax = E1 +E2 ≤
(
t−1
`−1
)
. Define x ≥ ` by

(
x
`

)
= |A|−

(
n
≥`+1

)
=(

t−1
`

)
+Emax and note that x ≤ n. By Lemma 2.4 we have Ψ ≥

(
n
`

)
+f`(

(
x
`

)
−Emax)+f`−1(Emax)−(

x
`

)
≥
(
n
`

)
−
(
x
`

)
+
(
x
`−1
)

= Blov(|A|), as required.

It remains to consider Emax =
(
t−1
`−1
)
. Note that f`(

(
t−1
`

)
)+f`−1(Emax) =

(
t−1
`−1
)
+
(
t−1
`−2
)

= f`(
(
t
`

)
),

so Ψ =
(
n
`

)
+ f`(

(
t
`

)
) + f`−1(Emin) −

((
t
`

)
+ Emin

)
. If t = n then |A| =

(
n
≥`
)

+ Emin and Ψ =(
n
`−1
)
+f`−1(Emin)−Emin = Blov(|A|). If t < n then |A| =

(
n
≥`+1

)
+
(
x
`

)
with

(
x
`

)
=
(
t
`

)
+Emin <

(
n
`

)
.

Similarly to the previous case, by Lemma 2.4 we have Ψ =
(
n
`

)
−
(
x
`

)
+f`(

(
x
`

)
−Emin)+f`−1(Emin) ≥(

n
`

)
−
(
x
`

)
+
(
x
`−1
)

= Blov(|A|). 2

Our next lemma boosts the accuracy of approximation in the ‘ball part’ of a family which is

not (necessarily) ball-sized.

Lemma 4.6. Let δ ∈ (0, 1), c = 10−3δ and A ⊂ {0, 1}n. Suppose |A| =
(

n
≥k+1

)
+
(
x
k

)
, with(

x
k

)
=
(
s
k

)
± δ

5

(
s−3
k−2
)
, where 2 ≤ k ≤ s ≤ n−1 and s ∈ N. Suppose also |A\

(
[n]
≥k+1

)
| <

(
n−1
k

)
−δ
(
s−3
k−2
)

and |∂v(A)| ≤ Blov(|A|) + ck(x−k)
x3

(
x
k−1
)
. Then |

(
[n]
≥k+1

)
\ A| ≤ δ

(
s−3
k−2
)
.
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Proof. Let E1 =
(
n−1
k

)
− |
(

[n]
≥k+1

)
\ A| and E2 = |A \

(
[n]
≥k+1

)
|. Then E1 + E2 =

(
n−1
k

)
+
(
x
k

)
,

Emax =
(
n−1
k

)
and Emin =

(
x
k

)
. By assumption E2 ≤

(
n−1
k

)
− δ
(
s−3
k−2
)
, so E1 ≥

(
x
k

)
+ δ
(
s−3
k−2
)
. We

may also assume E2 ≥ 1, as otherwise we are done. Then Lemma 4.5 gives |∂v(A)| − Blov(|A|) ≥(
fk(E1) + fk(E2)

)
−
(
fk(
(
x
k

)
) + fk(

(
n−1
k

)
)
)
. By Lemma 2.7.iii, applied with k and ck(x−k)

x2 in place

of ` and c we have min{E1, E2} ≤
(
x
k

)
+ 250c

(
x−3
k−2
)
. This bound must apply to E2, and we deduce

|
(

[n]
≥k+1

)
\ A| = E2 −

(
x
k

)
≤ δ
(
s−3
k−2
)
. 2

In the next lemma, with a proof similar to the previous one but somewhat more involved, we

boost the accuracy of approximation to a ball for sets that are approximately ball-sized.

Lemma 4.7. Let δ ∈ (0, 1), c = 10−3δ and A ⊂ {0, 1}n. Suppose |A| =
(
n
≥k
)
± δ

5

(
x−1
k−1
)
, where

2 ≤ k ≤ x ≤ n. If k = 2 suppose also that |A| ≤
(
n
≥2
)
. Suppose |∂v(A)| < Blov(|A|) + c

x

(
x
k−1
)

and

|A \
(
[n]
≥k
)
| <

(
n−1
k−1
)
− δ
(
x−1
k−1
)
. Then |A4

(
[n]
≥k
)
| ≤ δ

(
x−1
k−1
)
.

Proof. Let E1 =
(
n−1
k−1
)
− |
(
[n]
≥k
)
\A| and E2 = |A \

(
[n]
≥k
)
|. Note that E1 +E2−

(
n−1
k−1
)

= |A \
(
[n]
≥k
)
| −

|
(
[n]
≥k
)
\ A| = |A| − |

(
[n]
≥k
)
|. The hypotheses give E1, E2 <

(
n−1
k−1
)

and E1 ≥ 1. We may also assume

E2 ≥ 1, as otherwise we are done. For k = 2 note that this is already contrary to the hypothesis.

Indeed, taking m =
(
n
≥2
)

and D =
(
n−1
k−1
)
−E1, Lemma 4.3 gives |∂v(A)| ≥ |∂v(Jm,D,E)| = 2n−|A| ≥

Blov(A) + 1. Thus in this case E2 = 0 and we are done.

We now assume k ≥ 3. Applying Lemma 4.5 we obtain |∂v(A)| −Blov(|A|) ≥ Φ :=
(
fk−1(E1) +

fk−1(E2)
)
−
(
fk−1(Emin) + fk−1(Emax)

)
. We will argue according to |A|.

First consider the case |A| ≤
(
n
≥k
)
. Then Emin = 0 and

(
n−1
k−1
)
− δ

5

(
x−1
k−1
)
≤ Emax = E1 +

E2 ≤
(
n−1
k−1
)
. Also, Φ ≤ c

x

(
x
k−1
)

and E1 ≥ 4δ
5

(
x−1
k−1
)
. We have |A4

(
[n]
≥k
)
| = D + E2 where D :=

|
(
[n]
≥k
)
\ A| =

(
n−1
k−1
)
− E1 ≤ E2 + δ

5

(
x−1
k−1
)
, so it suffices to show E2 <

2δ
5

(
x−1
k−1
)
. Lemma 2.7.i gives

min{E1, E2} ≤ 400c
(
x−1
k−1
)
≤ 2δ

5

(
x−1
k−1
)
. This upper bound is less than our lower bound on E1, so

applies to E2.

It remains to consider |A| >
(
n
≥k
)
. Here we have Emax =

(
n−1
k−1
)

and 0 ≤ Emin = E1 +

E2 −
(
n−1
k−1
)
≤ δ

5

(
x−1
k−1
)
. Then |A4

(
[n]
≥k
)
| = D + E2 = 2E2 − Emin. However Lemma 2.7.ii gives

E2 ≤ Emin + 400c
(
x−1
k−1
)
≤ 1

2Emin +
(
δ
10 + 400c

)(
x−1
k−1
)
≤ δ

2

(
x−1
k−1
)

+ 1
2Emin, which rearranging proves

|A4
(
[n]
≥k
)
| ≤ δ

(
x−1
k−1
)

as required. 2

Our final lemma of this subsection relates the vertex boundary of A to that of its sections,

namely the families A0 and A1 in {0, 1}n−1 defined by

Aj = {x ∈ {0, 1}n−1 : (x, j) ∈ A}. (7)

We use superscripts of (n− 1) to avoid confusion between {0, 1}n−1 and {0, 1}n.

Lemma 4.8. Let δ ∈ (0, 1), c = 10−3δ and A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
, where

(
x
k

)
=
(
s
k

)
±

δ
5

(
s−3
k−2
)

for some s ∈ [k, n− 1]. Suppose |∂v(A)| ≤ Blov(|A|) + Φ and |A1| ≥ |A0| ≥
(
n−1
≥k+1

)
+
(
x−1
k

)
.

Then:

(i) |∂(n−1)v (A0)| ≤ B
(n−1)
lov (|A0|) + Φ and |∂(n−1)v (A1)| ≤ B

(n−1)
lov (|A1|) + Φ.

(ii) If k ≥ 2 and Φ ≤ ck(x−k)
x3

(
x
k−1
)

then |A0| =
(
n−1
≥k+1

)
+
(
x−1
k

)
± δ
(
x−1
k−1
)

or |A0| =
(
n−1
≥k+1

)
+
(
x
k

)
±

δ
(
x−1
k−1
)
.

Proof. Write X = |∂v(A)| − Blov(|A|) and Xj = |∂(n−1)v (Aj)| − B
(n−1)
lov (|Aj |). Then X, X0 and

X1 are non-negative by the Lovász form of Harper’s theorem. We will show X ≥ X0 + X1,

which implies (i). First we note that |∂v(A)| ≥ |∂(n−1)v (A0)| + |∂(n−1)v (A1)|, so it suffices to show
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B
(n−1)
lov (|A0|) + B

(n−1)
lov (|A1|) ≥ Blov(|A|). We let Ej = |Aj | −

(
n−1
≥k+1

)
for j = 0, 1 and consider two

cases according to the value of E1.

The first case is E1 ≤
(
n−1
k

)
. Note that

(
x
k

)
≤ E0 ≤ E1 ≤

(
n−1
k

)
. We have B

(n−1)
lov (|Aj |) =(

n−1
k

)
− Ej + fk(Ej) for j = 0, 1. As E0 + E1 =

(
x
k

)
+
(
n−1
k

)
, by concavity fk(E0) + fk(E1) ≥

fk(
(
x
k

)
) + fk(

(
n−1
k

)
) =

(
x
k−1
)

+
(
n
k−1
)
, so B

(n−1)
lov (|A0|) + B

(n−1)
lov (|A1|) ≥ 2

(
n−1
k

)
− (
(
x
k

)
+
(
n−1
k

)
) +

(
(
x
k−1
)

+
(
n−1
k−1
)
) =

(
n−1
k

)
−
(
x
k

)
+
(
x
k−1
)

= Blov(|A|), as required for (i). For (ii), first note that if

s = n − 1 then
(
n−1
k

)
− δ

5

(
n−4
k−2
)
≤ E0 ≤

(
n−1
k

)
, so E0 =

(
x
k

)
± δ
(
x−3
k−2
)

by Lemma 2.2. If s ≤ n − 2

then the previous calculation gives Φ ≥ X0 + X1 ≥ fk(E0) + fk(E1) −
(
fk(
(
x
k

)
) + fk(

(
n−1
k

)
)
)
, so

E0 ≤
(
x
k

)
+ δ
(
x−3
k−2
)

by Lemma 2.7.iii.

The second case is E1 ≥
(
n−1
k

)
, say E1 =

(
n−1
k

)
+ E′1 with E′1 ≥ 0. Note that E0 + E′1 =

(
x
k

)
.

By the lemma hypotheses, E0 ≥
(
x−1
k

)
, so E′1 ≤

(
x−1
k−1
)
. Adopting the notation of Lemma 2.8, we

write X =
(
x−1
k

)
, Y =

(
x−1
k−1
)
, E0 = X + y, E′1 = Y − y with 0 ≤ y ≤ Y . By concavity we have

fk(E0)+fk−1(E′1) ≥ fk(X)+fk−1(Y ) =
(
x
k−1
)
. We have B

(n−1)
lov (|A1|) =

(
n−1
k−1
)
−E′1 +fk−1(E′1), so

B
(n−1)
lov (|A0|) + B

(n−1)
lov (|A1|) ≥

(
n−1
k

)
−E0 +fk(E0) +

(
n−1
k−1
)
−E′1 +fk−1(E′1) =

(
n
k

)
−
(
x
k

)
+fk(E0) +

fk−1(E′1) ≥
(
n−1
k

)
−
(
x
k

)
+
(
x
k−1
)

= Blov(|A|), as required for (i). For (ii), the same calculation gives

fk(E0) + fk−1(E′1) <
(
x
k−1
)

+ Φ. For k ≥ 3 by Lemma 2.8, applied with ck(x−k)
x2 in place of c, we

have E0 ≤
(
x−1
k

)
+ 600 ck(x−k)x2

(
x−1
k−1
)
≤
(
x−1
k

)
+ δ
(
x−3
k−2
)
.

It remains to show (ii) when k = 2 and E1 ≥
(
n−1
k

)
. Note that here

(
x
k

)
=
(
s
k

)
± δ

5 , so
(
x
k

)
=
(
s
k

)
.

However, if E0 >
(
s−1
2

)
and E′1 > 0 then applying Harper’s theorem to both A0 and A1 gives

|∂v(A)| ≥ (
(
n−1
2

)
− E0 + s) + (

(
n−1
1

)
− E′1 + 1) = Blov(|A|) + 1 > Blov(|A|) + Φ, which is a

contradiction. Thus either E0 =
(
s−1
2

)
or E′1 = 0, as required. 2

4.3 Stability for ball-sized sets

In this subsection we will prove our first stability result for the vertex isoperimetric inequality,

which applies to families with size close to that of a Hamming ball; the case |A| =
(
n
≥k
)

implies

Theorem 1.1.

Theorem 4.9. Suppose δ ∈ (0, 1/4) and A ⊂ {0, 1}n with |A| = m± δ
5

(
n−1
k−1
)
, where m =

(
n
≥k
)

and

|∂v(A)| ≤ (1+ c
n )
(
n
k−1
)
, with c = 10−3δ. If k = 2 suppose also that |A| ≤ m. Then |A4B| ≤ δ

(
n−1
k−1
)

for some Hamming ball B. Furthermore, |∂v(A)| ≥ |∂v(Jm,D,E)| where D = |B\A| and E = |A\B|.

Proof. Let {(Ui, Vi)}i∈[L1] be the sequence of compressions provided by Theorem 4.1. We show by

induction on L1 ≥ i ≥ 0 that there is a Hamming ball Bi of radius n−k such that |Bi4Ai| ≤ δ
(
n−1
k−1
)
.

As A0 = A this will prove the theorem (the ‘furthermore’ statement following from Lemma 4.3).

Initially, it holds with BL1
= B :=

(
[n]
≥k
)
, as AL1

= I|A| and |A| =
(
n
≥k
)
± δ

5

(
n−1
k−1
)
.

For L1 ≥ i ≥ L0 we show the required statement with Bi = B. Suppose i ∈ [L0, L1 − 1] and

|
(
[n]
≥k
)
4Ai+1| ≤ δ

(
n−1
k−1
)
. As |Vi| = |Ui|+ 1, if A ∈ (B \Ai) \ (B \Ai+1) we have |A| = k, V ⊂ A and

U ∩ A = ∅. The number of such sets A is
(
n−|U |−|V |
k−|V |

)
≤
(
n−3
k−2
)
, so |B \ Ai| ≤ |B \ Ai+1|+

(
n−3
k−2
)
≤

(δ+ 1
2 )
(
n−1
k−1
)
≤ (1− δ)

(
n−1
k−1
)

as δ < 1
4 . Lemma 4.7 (with x = n) improves this to |B \Ai| ≤ δ

(
n−1
k−1
)
,

as required.

Now suppose i ∈ [0, L0−1] and |Bi+1 \Ai+1| ≤ δ
(
n−1
k−1
)

where Bi+1 = Bnn−k(Ai+1) is a Hamming

ball of radius n − k, centred at Ai+1 ⊂ [n]. We have Ui = ∅ and Vi = {s} for some s ∈ [n]. Let

B(1) = Bi+1 and B(2) = Bi+14{s} = Bnn−k(A′i+1), where A′i+1 := Ai+14{s}. We claim that

|B(1) \ Ai|+ |B(2) \ Ai| = |B(1) \ Ai+1|+ |B(2) \ Ai+1|.

To see this, we consider the number of times that any set A is counted by each side of the identity. If

C∅,{s}(A) = A then interchanging Ai and Ai+1 does not affect the contribution of A. This remains
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true when C∅,{s}(A) 6= A, unless A ∈ Ai \ Ai+1 and A ∈ Ai+1 \ Ai. In this last case, we note that

C∅,{s}(B(1) ∪B(2)) = B(1) ∪B(2), so A contributes to the left hand side of the identity iff C∅,{s}(A)

contributes to the right hand side. The claim follows.

As |Bi+1 \Ai+1| ≤ δ
(
n−1
k−1
)
, we deduce |B(1) \Ai|+ |B(2) \Ai| ≤

(
n−1
k−1
)

+ 2δ
(
n−1
k−1
)
, so |B(j) \Ai| ≤

1
2

(
n−1
k−1
)

+ δ
(
n−1
k−1
)
≤
(
n−1
k−1
)
− δ
(
n−1
k−1
)

for some Bi ∈ {B(1),B(2)} (as δ < 1
4 ). Lemma 4.7 improves this

to |Bi4Ai| ≤ δ
(
n−1
k−1
)
, and so completes the proof. 2

4.4 Decompressing upsets

Of the two extremal families in Theorem 1.3, only one (G1) is an upset. In this subsection we show

that any upset with small vertex boundary is approximated by such a family.

Lemma 4.10. Let δ ∈ (0, 13 ), c = 10−9δ, k ≥ 2 and A ⊂ {0, 1}n be an upset with |A| =
(

n
≥k+1

)
+
(
x
k

)
and |∂v(A)| ≤ Blov(|A|) + ck(x−k)

x3

(
x
k−1
)
, where

(
x
k

)
=
(|S|
k

)
± δ

5

(|S|−3
k−2

)
for some |S| ∈ [k, n− 1].

Suppose that U, V ⊂ [n] are disjoint sets with |U | + 1 = |V | ≥ 2 and B = CU,V (A) satisfies

|B4G| ≤ δ
(|S|−3
k−2

)
, where G =

(
[n]
≥k+1

)
∪
(
S
k

)
. Then |A4G| ≤ δ

(|S|−3
k−2

)
.

Proof. First we note that |A| = |B| = |G|±δ
(|S|−3
k−2

)
, so |G\A|−|G\B| ≤ |A\G|−|B\G|+2δ

(|S|−3
k−2

)
, and

so |A4G|−|B4G| ≤ 2(|A\G|−|B\G|+δ
(|S|−3
k−2

)
). It will therefore suffice to bound |A\G|−|B\G|,

which counts sets removed from G under the decompression, i.e. CU,V (A) ∈ (B \ A) ∩ G and

A ∈ (A \ B) \ G. Such sets must satisfy:

(a) CU,V (A) ∈ (B \ A) ∩
(

[n]
k+1

)
and A ∈

(
[n]
k

)
\
(
S
k

)
, or

(b) CU,V (A) ∈ (B \ A) ∩
(
S
k

)
and A ∈ (A \ B) ∩

(
[n]
k−1
)
.

We write Ta or Tb for the families of type (a) or (b) sets as above. When bounding Ta, it will be

more convenient to bound D :=
(

[n]
≥k+1

)
\ A, noting that

Ta ⊂ D ⊂ Ta ∪ (
(

[n]
≥k+1

)
\ B).

We divide the remainder of the proof into cases according to the size of S. We start with the

case |S| ≤ n− 3. As |U |+ 1 = |V | we have
∣∣|A| − |CU,V (A)|

∣∣ ≤ 1 for any set A, so

|A \
(

[n]
≥k+1

)
| ≤ |B \

(
[n]
≥k+1

)
|+
(
n−|U |−|V |
k+1−|V |

)
≤
(|S|
k

)
+ δ
(|S|−3
k−2

)
+
(
n−3
k−1
)
≤
(
n−1
k

)
− δ
(|S|−3
k−2

)
,

as δ < 1
2 . By Lemma 4.6 we deduce |Ta| ≤ |D| ≤ δ

(|S|−3
k−2

)
.

To bound type (b) sets, we define an injection from Tb to A ∩
((

[n]
k

)
\
(
S
k

))
by A 7→ A + s, for

some fixed s ∈ [n] with s ∈ Sc if U ⊂ S or s ∈ V if U 6⊂ S. To see that this map is well-defined on

A ∈ Tb, note that A+ s ∈ A as A is an upset, and s /∈ A using A ⊂ CU,V (A) ∪ U ⊂ S if U ⊂ S or

A ∩ V = ∅ if U 6⊂ S. We also note that

|A ∩
((

[n]
k

)
\
(
S
k

))
| ≤ |D|+ |B \ G|,

as if A ∈ A ∩
((

[n]
k

)
\
(
S
k

))
we have A ∈ B \ G or CU,V (A) ∈ D. We deduce |Tb| ≤ |D| + |B \ G| ≤

2δ
(|S|−3
k−2

)
, so |A \ G| − |B \ G| ≤ 3δ

(|S|−1
k−1

)
, giving |A4G| ≤ 8δ

(|S|−3
k−2

)
. Lemma 4.4 improves this to

the required bound |A4G| ≤ δ
(|S|−3
k−3

)
, which completes the proof if |S| ≤ n− 3.

Henceforth we can assume |S| ∈ {n − 2, n − 1}. Next we consider the case U ∩ Sc 6= ∅. As

U ∩V = ∅ we have |V ∩Sc| ≤ 1. We start by bounding type (a) sets according to the two subcases

|V ∩Sc| = 0, 1. First we consider the subcase V ∩Sc = {v}, in which case we can define an injection

from Ta to
(
S
k

)
\B by A 7→ CU,V−v(A). Indeed, as U ⊂ A and A∩V = ∅ we have CU,V−v(A) ∈

(
S
k

)
.
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Furthermore, CU,V−v(A) /∈ B, as otherwise CU,V−v(A) ∈ A but CU,V (A) /∈ A, which contradicts A
being an upset. We deduce |Ta| ≤ |

(
S
k

)
\ B| ≤ δ

(|S|−3
k−3

)
in the subcase |V ∩ Sc| = 1.

Now consider the subcase V ∩ Sc = ∅. The same argument as in the previous subcase (using

any v ∈ V ) bounds the number of A ∈ Ta with CU,V (A) ⊂ S. This accounts for all type (a)

sets if |S| = n − 1. If |S| = n − 2 then any further sets A ∈ Ta contain Sc, so number at

most
(
n−|V |−|U |−1
k−|U |−1

)
≤
(
n−4
k−2
)
. We deduce |Ta| ≤

(
n−4
k−2
)

+ δ
(|S|−3
k−3

)
, so |D| ≤ |Ta| + δ

(|S|−3
k−3

)
≤(

n−4
k−2
)

+ 2δ
(|S|−3
k−3

)
≤
(
n−1
k−1
)
− δ
(|S|−3
k−2

)
as δ < 1

3 . By Lemma 4.6 we deduce |Ta| ≤ |D| ≤ δ
(|S|−3
k−2

)
,

thus bounding type (a) sets in both subcases.

Now we can bound type (b) sets by the same argument as in the case |S| ≤ n − 3, using an

injection Tb → A ∩ (
(
[n]
k

)
\
(
S
k

)
) defined by A 7→ A + v for any fixed v ∈ V . To see that this is

well-defined on A ∈ Tb, note that v /∈ A as CU,V (A) 6= A, and that U ⊂ A 6⊂ S. The remainder

of the proof follows as in the previous case, so henceforth we can assume |S| ∈ {n− 2, n− 1} and

U ∩ Sc = ∅.
We can assume Sc 6⊂ V , as otherwise |A4G| = |B4G| ≤ δ

(|S|−1
k−1

)
. To see this, note that

CU,V (A) = A for any A ∈
(
[n]
k

)
\
(
S
k

)
as A ∩ V 6= ∅, and that no A ∈ A ∩

(
[n]
k−1
)

has CU,V (A) ∈
(
S
k

)
,

as V ∩ Sc 6= ∅.
Without loss of generality, n ∈ Sc \ V . As in (7) we use superscripts 0 and 1 to denote

the sections of a family in direction n. Note that A and CU,V (A) belong to the same section

for any set A, as n /∈ U ∪ V . This gives |A1| = |B1| =
(
n−1
≥k
)
± δ
(|S|−3
k−2

)
and |A0| = |B0| =(

n−1
≥k+1

)
+
(|S|
k

)
± δ
(|S|−1
k−1

)
≥
(
n−1
≥k+1

)
+
(
x
k

)
− 2δ

(
x−1
k−1
)
≥
(
n−1
≥k+1

)
+
(
x−1
k

)
. Note that if k = 2 we have

|A1| =
(
n−1
≥2
)
. Furthermore, as A is an upset we have A0 ⊂ A1, so |A0| ≤ |A1|. Lemma 4.8 therefore

gives |∂(n−1)v (A1)| ≤ B
(n−1)
lov (|A1|) + ck(x−k)

x3

(
x
k−1
)
≤ B

(n−1)
lov (|A1|) + c

n−1
(
n−1
k−1
)
. Then Theorem 4.9

gives |A14H| ≤ δ
(
n−2
k−1
)

for some Hamming ball H ⊂ {0, 1}n−1, and Lemma 4.7 improves this to

|A14H| ≤ δ
(|S|−3
k−2

)
. As A1 is an upset, H =

(
n−1
≥k
)
.

In particular, the number of type (a) and type (b) sets containing n are both bounded by

δ
(|S|−3
k−2

)
. As A0 ⊂ A1 we have |A0 \ H| ≤ δ

(|S|−1
k−1

)
. In particular, this bounds type (b) sets in A0.

If |S| = n − 1 then |A \ G| = |A0 \ H| + |A1 \ H| ≤ 2δ
(|S|−1
k−1

)
, and Lemma 4.4 improves this to

|A4G| ≤ δ
(|S|−3
k−2

)
.

Finally, we consider |S| = n− 2 and bound type (a) sets in A0. We write [n− 1] \ S = {v} and

define an injection A 7→ CU,V (A)−v from Ta∩A0 to (
(
S
k

)
\B)∪CU,V (A0\H). To see that this is well-

defined, first note that A ∈
(
[n−1]
k

)
and CU,V (A) 6= A, so v ∈ A\U and v ∈ CU,V (A) ∈ B\A. As A is

an upset, CU,V (A)−v ∈
(
S
k

)
\A. If CU,V (A)−v /∈

(
S
k

)
\B then CU,V (A−v) = CU,V (A)−v ∈ B\A, so

A−v ∈ A0\H. We deduce |Ta∩A0| ≤ |
(
S
k

)
\B|+ |A0\H| ≤ 2δ

(|S|−3
k−2

)
. Altogether, |A\G|−|B\G| ≤

5δ
(|S|−3
k−2

)
, so |A4G| ≤ 12δ

(|S|−3
k−2

)
, and Lemma 4.4 improves this to |A4G| ≤ δ

(|S|−3
k−2

)
. 2

4.5 Decompressing general sets

In this subsection we prove that if A has small vertex boundary and C∅,{i}(A) is close to a gener-

alised Hamming ball then so is A. Without loss of generality we take i = n. First we show that the

size of the intersection of two Hamming balls is a non-increasing function of the distance between

their centres. At first, this may sound too obvious to need a proof, but perhaps surprisingly, if t is

odd then increasing the distance from t to t+ 1 makes no difference to the intersection size.

Lemma 4.11. Let ft(n, k) = |Bnn−k(C) ∩ Bnn−k(C ′)| where |C4C ′| = t. Let Dt(n, k) = {A ⊂
[n− 1] : |A| = |A4[t]| = k − 1}. Then ft(n, k)− ft+1(n, k) = |Dt(n, k)|.

Proof. We write ft(n, k) − ft+1(n, k) = |Bnn−k([n]) ∩ Bnn−k([n] \ [t])| − |Bnn−k([n]) ∩ Bnn−k([n] \ [t +

1])| = |X ′| − |X |, where X ′ = |{A′ ⊂ [n] : |A′| ≥ k, |A′4[t]| = k, |A′4[t + 1]| = k − 1}| and
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X = |{A ⊂ [n] : |A| ≥ k, |A4[t+ 1]| = k, |A4[t]| = k− 1}|. Every set A ∈ X does not contain t+ 1,

and adding t+1 gives a set A′ ∈ X ′. The map A 7→ A∪{t+1} is injective, so |X ′|−|X | is the number

of sets in X ′ not in the image, i.e. |X ′| − |X | = |{A : t+ 1 ∈ A, |A| = |A4[t]| = k}| = |Dt(n, k)|. 2

Now we come to the main lemma of this subsection.

Lemma 4.12. Let δ ∈ (0, 1), c = 10−9δ and A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
and |∂v(A)| ≤

Blov(|A|) + ck(x−k)
x3

(
x
k−1
)
, where

(
x
k

)
=
(|S|
k

)
± δ

8

(|S|−3
k−2

)
for some |S| ∈ [k, n − 1] with k ≥ 2.

Suppose B := C∅,{n}(A) satisfies |B4G| ≤ δ
(|S|−3
k−2

)
for some generalised Hamming ball G with

|G| =
(

n
≥k+1

)
+
(|S|
k

)
. Then |A4G′| ≤ δ

(|S|−3
k−2

)
for some generalised Hamming ball G′.

Proof. First we note that the lemma is trivial for k ≥ n − 1, so we can assume k ≤ n − 2. By

applying an automorphism of the cube, we may assume G = G1 =
(

[n]
≥k+1

)
∪
(
S
k

)
or G = G2 =(

n
≥k+1

)
∪
(
S′

k

)
∪
(
S′

k−1
)

with |S| = |S′|+ 1. These two cases are in turn each split into two subcases

according to whether n belongs to S or S′, denoted by superscripts as in (7), as follows:

(a) G01 =
(
[n−1]
≥k+1

)
∪
(
S
k

)
and G11 =

(
[n−1]
≥k+1

)
∪
(
[n−1]
k

)
, where n /∈ S;

(b) G01 =
(
[n−1]
≥k+1

)
∪
(
S′

k

)
and G11 =

(
[n−1]
≥k+1

)
∪
(
[n−1]
k

)
∪
(
S′

k−1
)
, where S = S′ ∪ {n};

(c) G02 =
(
[n−1]
≥k+1

)
∪
(
S′

k

)
∪
(
S′

k−1
)

and G12 =
(
[n−1]
≥k+1

)
∪
(
[n−1]
k

)
, where n /∈ S′;

(d) G02 =
(
[n−1]
≥k+1

)
∪
(
S′′

k

)
∪
(
S′′

k−1
)

and G12 =
(
[n−1]
≥k+1

)
∪
(
[n−1]
k

)
∪
(
S′′

k−1
)
∪
(
S′′

k−2
)
, where S′ = S′′ ∪ {n}.

A family is of type (a) if it can be approximated up to δ
(|S|−3
k−2

)
elements by a family isomorphic

to (a), and similarly for type (b), (c), (d). Some case-checking shows that then the type and the

associated set S, S′ or S′′ are unique (which we omit, as we do not use this fact in the proof). We

let G0 and G1 denote the appropriate families for the approximation of B.

As B = C∅,{n}(A), we note that A and B are related by the ‘intersection-union transformation’

B0 = A0 ∩A1 and B1 = A0 ∪A1.

In particular, B0 ⊂ B1, so B cannot be of type (c), which has |G0\G1| =
(|S|−1
k−1

)
> δ
(|S|−3
k−2

)
≥ |B4G|.

By possibly swapping A0 and A1 we can assume |A0| ≤ |A1|; indeed, this does not affect B0 and

B1, and any approximation for the ‘swapped’ family gives one for A, via the automorphism of the

cube that swaps 0 and 1 in coordinate n. We claim that the sections of A have just two possible

types of approximate sizes, namely

(i) |A0| =
(
n−1
≥k+1

)
+
(|S|
k

)
± δ
(|S|−3
k−2

)
and |A1| =

(
n−1
≥k+1

)
+
(
n−1
k

)
± δ
(|S|−3
k−2

)
, or

(ii) |A0| =
(
n−1
≥k+1

)
+
(|S|−1

k

)
± δ
(|S|−3
k−2

)
and |A1| =

(
n−1
≥k+1

)
+
(
n−1
k

)
+
(|S|−1
k−1

)
± δ
(|S|−3
k−2

)
.

To see this claim, first note that

|A0| ≥ |B0| ≥ |G0| − δ
(|S|−3
k−2

)
≥
(
n−1
≥k+1

)
+
(|S|−1

k

)
− δ
(|S|−3
k−2

)
.

If (ii) does not hold then |A0| >
(
n−1
≥k+1

)
+
(|S|−1

k

)
+ δ
(|S|−3
k−2

)
>
(
n−1
≥k+1

)
+
(
x−1
k

)
+ δ

2

(
x−3
k−2
)

(the latter

by Lemma 2.2), so (i) holds by Lemma 4.8 (applied with δ
2 in place of δ).

We now consider separate cases according to whether the type of the sizes of the sections of A is

the same as that of B. Suppose first that |A0| = |G0|±δ
(|S|−3
k−2

)
(which is the same estimate that we

know for |B0|). Then |A1| = |G1|± 2δ
(|S|−3
k−2

)
. As B0 ⊂ A0 we have |G0 \A0| ≤ |G0 \B0| ≤ δ

(|S|−3
k−2

)
,

so |G04A0| ≤ 2|G0 \ A0| + ||A0| − |G0|| ≤ 3δ
(|S|−3
k−2

)
. Similarly, |A1 \ G1| ≤ |B1 \ G1| ≤ δ

(|S|−3
k−2

)
,

so |G14A1| ≤ 2|A1 \ G1| + ||A1| − |G1|| ≤ 4δ
(|S|−3
k−2

)
. We deduce |A4G| ≤ 7δ

(|S|−3
k−2

)
. Lemma 4.4
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improves this to |A4G| ≤ δ
(|S|−3
k−2

)
, so A has the same type as B, and the proof is complete in this

case.

It remains to consider the case |A0| /∈ |G0|±δ
(|S|−3
k−2

)
, i.e. the sizes of the sections of A are of the

opposite type to those of B. Here we note that B must be of type (b) or (d). Indeed, we have already

noted that (c) is impossible, and type (a) falls into the previous case, as |A0| ≥ |G0| − δ
(|S|−3
k−2

)
=(

n−1
≥k+1

)
+
(|S|
k

)
− δ
(|S|−3
k−2

)
>
(
n−1
≥k+1

)
+
(|S|−1

k

)
+ δ
(|S|−3
k−2

)
. Thus B has section sizes of type (ii) and A

has sections sizes of type (i).

By Lemma 4.8, |∂(n−1)v (Aj)| ≤ B
(n−1)
lov (|Aj |) + ck(x−k)

x3

(
x
k−1
)

for j = 0, 1. As |A1| =
(
n−1
≥k
)
±

δ
(|S|−3
k−2

)
(giving |A1| =

(
n−1
≥k
)

if k = 2), by Theorem 4.9 we have |A14H1| < 5δ
(|S|−3
k−2

)
for some

Hamming ball H1 in {0, 1}n−1 of size
(
n−1
≥k
)
. Now we see that B cannot be of type (d), as this would

give |G \ B| ≥ |G02 \ A1| ≥
(|S|−2
k−1

)
− 5δ

(|S|−3
k−2

)
> δ

(|S|−3
k−2

)
, contradiction. Thus B has type (b), i.e.

|B4G1| ≤ δ
(|S|−3
k−2

)
with G01 =

(
[n−1]
≥k+1

)
∪
(
S′

k

)
and G11 =

(
[n−1]
≥k+1

)
∪
(
[n−1]
k

)
∪
(
S′

k−1
)
, where S = S′ ∪{n}.

Next we consider the subcase that
(|S|−1
k−1

)
≤
(
n−2
k−1
)
− 7δ

(
n−4
k−2
)
. We must have H1 =

(
[n−1]
≥k
)
, as

otherwise by Lemma 4.11 we get |B1 \ G1| ≥ |A1 \ G1| ≥
(
n−2
k−1
)
−
(|S|−1
k−1

)
− 5δ

(|S|−3
k−2

)
≥ 2δ

(|S|−3
k−2

)
,

contradiction. As A0 \H1 ⊂ B1 \H1 we have |A0 \G11 | ≤ δ
(|S|−3
k−2

)
, and as H1 \A0 ⊂ H1 \B0 we have

|G01 \ A0| ≤ δ
(|S|−3
k−2

)
. Then with G02 =

(
[n−1]
≥k+1

)
∪
(
S′

k

)
∪
(
S′

k−1
)

as in (c) we have |A04G02 | ≤ 5δ
(|S|−3
k−2

)
(using |A0| = |G02 | ± δ

(|S|−3
k−2

)
) so |A4G2| ≤ 10δ

(|S|−3
k−2

)
. Lemma 4.4 improves this to |A4G2| ≤

δ
(|S|−3
k−2

)
, so A has type (c), which completes the proof of this subcase.

It remains to consider the subcase that
(|S|−1
k−1

)
>
(
n−2
k−1
)
− 7δ

(
n−4
k−2
)

= (1− 7δ(k−1)(n−k−1)
(n−2)(n−3) )

(
n−2
k−1
)
.

By Lemma 2.2 we have
( |S|
k−1
)
> (1− 7δ(k−1)(n−k−1)

(n−2)(n−3) )
(
n−1
k−1
)
>
(
n−1
k−1
)
−7δ

(
n−3
k−2
)
. Then |A1| =

(
n−1
≥k
)
±

δ
(
n−3
k−2
)

and |A0| =
(
n−1
≥k
)
± 7δ

(
n−3
k−2
)
. By Lemma 4.8, |∂(n−1)v (Aj)| ≤ B

(n−1)
lov (|Aj |) + ck(x−k)

x3

(
x
k−1
)

for j = 0, 1, so by Theorem 4.9 we have |A14H1| < 5δ
(
n−3
k−2
)

and |A04H0| < 35δ
(
n−3
k−2
)

for some

Hamming balls H0,H1 in {0, 1}n−1 both of size
(
n−1
≥k
)
. Note that H0 6= H1, as otherwise we would

be in our previous case where A and B have the same type of section sizes.

Next we claim that the centres of H0 and H1 cannot be at distance more than 1 apart. To see

this, first note that either centre is at distance at most 2 from [n], as otherwise by Lemma 4.11

we get |B1 \
(
[n−1]
≥k
)
| ≥

(
n−2
k−1
)

+ 2
(
n−3
k−2
)
, so |B1 \ G1| ≥ (2 − δ)

(
n−3
k−2
)
, contradiction. Furthermore,

we cannot have either centre at distance exactly 2 from [n], say Hi = Bn−1n−k−1([n − 2]), as then(
[n−1]
≥k
)
\ Hi contains {A ⊂ [n − 1] : |A| = k + 1, {n − 1, n − 2} ⊂ A} of size

(
n−3
k−1
)
≥
(|S|−3
k−2

)
,

so |G0 \ B0| ≥ (1 − δ)
(|S|−3
k−2

)
, contradiction. It remains to rule out two centres of size n − 1, say

Hi = Bn−1n−k−1([n− 1] \ {xi}) for i = 0, 1. In this case H0 ∪H1 has no sets of size k− 2, which rules

out B of type (d), which has
(|S|−2
k−2

)
>
(|S|−3
k−2

)
such sets. Also, H0 ∩ H1 contains all sets of size

k− 1 disjoint from {x0, x1}; there are
(
n−3
k−1
)
≥
(|S|−3
k−2

)
such sets, which rules out B of type (b), and

so proves the claim.

We conclude that the centres of H0 and H1 are at distance 1. Let H ⊂ {0, 1}n have sections

H0,H1. Then H is isomorphic to a generalised Hamming ball G′ =
(

[n]
≥k+1

)
∪
(
[n−2]
k

)
∪
(
[n−2]
k−1

)
. We

have |A4G′| < 40δ
(
n−4
k−2
)
, and Lemma 4.4 improves this to the required approximation |A4G′| <

δ
(
n−4
k−2
)
. 2

4.6 Stability for Harper’s Theorem

We conclude this section by proving our main result on stability for vertex isoperimetry in the cube.

Proof of Theorem 1.3. Let δ ∈ (0, 1), c = 10−10δ and A ⊂ {0, 1}n with |A| =
(

n
≥k+1

)
+
(
x
k

)
and

|∂v(A)| ≤ Blov(|A|) + ck(x−k)
x3

(
x
k−1
)
. Let {(Ui, Vi)}i∈[L1] and {Ai}i∈[L1] be as in Theorem 4.1. We
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will show for L1 ≥ i ≥ 0 that there is some generalised Hamming ball Gi with |Gi4Ai| ≤ δ
(|S|−1
k−1

)
.

As A0 = A, the theorem will follow by taking i = 0.

We start by considering AL1
, which is ‘ball-like’, i.e. AL1

=
(

[n]
≥k+1

)
∪ B, for some B ⊂

(
[n]
k

)
. As

|AL1 | = |A|, we have |B| =
(
x
k

)
. Theorem 4.1.iv gives

(
n
k

)
−
(
x
k

)
+ |∂(B)| = |∂v(AL1)| ≤ |∂v(A0)| ≤(

n
k

)
−
(
x
k

)
+
(
1 + ck(x−k)

x3

)(
x
k−1
)
, so |∂(B)| ≤

(
1 + ck(x−k)

x3

)(
x
k−1
)
. By Theorem 1.2 (with ck(x−k)

x2

in place of c) we have |B4
(
S
k

)
| ≤ δ

8

(|S|−3
k−2

)
for some S ⊂ [n], so |AL1

4G| ≤ δ
8

(|S|−3
k−2

)
, where

G =
(

[n]
≥k+1

)
∪
(
S
k

)
. Note that

(
x
k

)
= |B| =

(|S|
k

)
± δ

8

(|S|−3
k−2

)
. If |S| = n then the theorem follows from

Theorem 4.9 applied to A (with 2ck(n−k)
n2 in place of c) so we may assume |S| ≤ n− 1.

Next we show |Ai4G| ≤ δ
(|S|−3
k−2

)
for L1 ≥ i ≥ L0. The case i = L1 was proved above.

We proceed inductively for i < L1, supposing the required approximation for Ai+1. As Ai is an

upset with |Ai| =
(

n
≥k+1

)
+
(
x
k

)
and |∂v(Ai)| ≤ Blov(|Ai|) + ck(x−k)

x3

(
x
k−1
)
, by Lemma 4.10 we have

|Ai4G| ≤ δ
(|S|−3
k−2

)
, as required.

To complete the proof, we now show for L0 ≥ i ≥ 0 that there is a generalised Hamming

ball Gi with |Gi4Ai| ≤ δ
(|S|−3
k−2

)
. We showed this above for i = L0. Proceeding inductively for

i < L0, given the required approximation |Gi+14Ai+1| ≤ δ
(|S|−3
k−2

)
for Ai+1, by Lemma 4.12 we

have |Ai4Gi| ≤ δ
(|S|−3
k−2

)
for some generalised Hamming ball Gi, as required. 2

5 Applications

In this section we give various applications of our stability versions of Harper’s Theorem and

Kruskal–Katona to stability versions of other results in Extremal Combinatorics. We start with

stability for the Erdős–Ko–Rado theorem. First we recall an estimate on shadows known as the

‘LYM inequality’ (see [1]): if n ≥ k ≥ 1 and A ⊂
(
[n]
k

)
with |A| = α

(
n
k

)
then |∂(A)| ≥ α

(
n
k−1
)
.

This estimate is weaker than those used elsewhere in the paper but will be convenient in some

calculations. We will use it in the following form that follows from Kruskal–Katona, Lemma 3.1.i

and LYM:

|A| =
(
n−1
k

)
+ α

(
n−1
k−1
)
⇒ |∂(A)| ≥

(
n−1
k−1
)

+ α
(
n−1
k−2
)
. (8)

Proof of Theorem 1.4. We apply a stability analysis to Daykin’s proof [6] of the Erdős–Ko–Rado

theorem. Suppose A ⊂
(
[n]
k

)
is intersecting. Let Bn−k = {Ac : A ∈ A} and iteratively define

Bi := ∂(Bi+1) ⊂
(
[n]
i

)
for n− k − 1 ≥ i ≥ k. Note that A ∩ Bk = ∅, as if A ∈ A ∩ Bk then there is

B ∈ Bn−k with A ⊂ B, i.e. Bc ∈ A with A ∩ Bc = ∅, which contradicts A being intersecting. In

particular, |A|+ |Bk| ≤
(
n
k

)
. To prove the theorem, we will show that if |A| is close to

(
n−1
k−1
)

then

this inequality is only possible when A is close to a star.

Let c0 = 10−9θ, c = 10−3c0 and δ = c(n−2k)
n . Suppose |A| > (1−δ)

(
[n]
k

)
. We may assume n ≥ 16,

as otherwise |A| =
(
n−1
k−1
)
, so A is a star by the characterisation of equality in the Erdős–Ko–Rado

theorem. Define xi ≥ k by |Bi| =
(
xi

i

)
for all i ∈ [k, n−k]. Note that xi ≥ xi+1 for k ≤ i < n−k by

the Lovász form of Kruskal–Katona. Also,
(
xn−k

n−k
)

= |Bn−k| = |A| ≥ (1−δ)
(
n−1
n−k
)
> (1+2δ)−1

(
n−1
n−k
)
.

As n − k ≥ n/2 this implies (1 + 4δ
n )n−k

(
xn−k

n−k
)
>
(
n−1
n−k
)
, and so by Lemma 2.1.i we deduce

n− 1 ≤ (1 + 4δ
n )xn−k ≤ xn−k + 4δ.

We claim that |∂(B`)| ≤ (1 + c0
n )
(
x`

`−1
)

for some ` ∈ [k,min(n − k − 1, 3n/4)]. Suppose for

a contradiction that this fails. As x` ≥ n − 2 ≥ 7n/8 ≥ (1 + 1/6)` for all such `, by Lemma

2.1.ii applied with α = 1/6 and θ = c0
n we have x` ≥ (1 + c0

15n2 )x`+1. Applying this bound

iteratively, as min(n − 2k, n/4 + (n/2 − k)) ≥ (n − 2k)/2 we obtain xk ≥ (1 + c0(n−2k)
30n2 )xn−k. As

xn−k ≥ n − 1 − 4δ ≥ 7n
8 this gives xk ≥ n − 1 − 4δ + c0

40 ·
n−2k
n ≥ n − 1 + 4δ. By Lemma 2.1.i we

deduce |Bk| =
(
xk

k

)
≥
(
1 + 4δk

n

)(
n−1
k

)
=
(
n−1
k

)
+ 4δ(n−k)

n

(
n−1
k−1
)
≥
(
n−1
k

)
+ 2δ

(
n−1
k−1
)

as k < n/2. This

contradicts Bk ∩ A = ∅, so the claim holds.
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By Theorem 1.2, there is S ⊂ [n] with |S| ∈ {bx`c, dx`e} ⊂ {n− 2, n− 1, n} so that |B`4
(
S
`

)
| ≤

θ
(|S|−1
`−1

)
. We claim that |S| = n− 1. To see this, first note that

(
x`

`

)
≤
(|S|
`

)
+ θ
(|S|−1
`−1

)
≤
(|S|+θ

`

)
by

(3), so |S| ≥ x`−θ > n−2. On the other hand, if |
(
[n]
`

)
\B`| ≤ θ

(
n−1
`−1
)

then |B`| ≥
(
n−1
`

)
+(1−θ)

(
n−1
`−1
)
,

so (8) gives |Bk| ≥
(
n−1
k

)
+ (1 − θ)

(
n−1
k−1
)
>
(
n
k

)
− |A|, which is a contradiction. Thus |S| = n − 1,

as claimed.

Now |B`∩
(
S
`

)
| ≥

(|S|
`

)
−θ
(|S|−1
`−1

)
=
(|S|−1

`

)
+(1−θ)

(|S|−1
`−1

)
, so |Bk∩

(
S
k

)
| ≥

(|S|−1
k

)
+(1−θ)

(|S|−1
k−1

)
=(|S|

k

)
− θ
(|S|−1
k−1

)
by (8). As A∩Bk = ∅ this gives |A∩

(
S
k

)
| ≤ θ

(
n−2
k−1
)
≤ θ
(
n−1
k−1
)
. This proves the first

statement of the lemma with the star S :=
(
[n]
k

)
\
(
S
k

)
.

Without loss of generality, S = S1 = {A ∈
(
[n]
k

)
: 1 ∈ A}. As θ < 1/2 and n ≥ 2k we

have E := |A \ S1| ≤ θ
(
n−1
k−1
)
≤
(
n−2
k−1
)
. Let C := {Cc : C ∈ A \ S1} ⊂

(
[n]
n−k
)
. Noting that

1 ∈ C for all C ∈ C, we take Cn−k−1 := {C : {1} ∪ C ∈ C} ⊂
(

[2,n]
n−k−1

)
, and iteratively define

Ci = ∂(Ci+1) for n − k − 2 ≥ i ≥ k − 1. Then A ∩ S1 and Ck−1 + 1 are disjoint subsets of(
[2,n]
k−1
)

+ 1, so |A∩S1| ≤
(
n−1
k−1
)
− |Ck−1| =

(
n−1
k−1
)
− |∂(n−2k)(Cn−k−1)| ≤

(
n−1
k−1
)
− |∂(n−2k)(I(n−k−1)E )|,

where the last inequality holds by Kruskal–Katona (repeatedly applied). Thus |A| = |A ∩ S1| +
|A \ S1| ≤

(
n−1
k−1
)
− |∂(n−2k)(I(n−k−1)E )| + E = |FE |, as I(n−k−1)E + 1 = {Ac : A ∈ FoutE }}, so

S1 \F inE = ∂(n−2k)(I(n−k−1)E ) + 1. The final statement of the theorem holds as if E =
(

u
n−k−1

)
then

|∂(n−2k)(I(n−k−1)E )| ≥
(
u
k−1
)

by the Lovász form of Kruskal–Katona (repeatedly applied). 2

Next we prove our stability version of Katona’s Intersection Theorem.

Proof of Theorem 1.5. Suppose A ⊂ {0, 1}n is t-intersecting, where t = 2k − n ≥ 2 and |A| ≥(
n
≥k
)
− θδ

(
n−1
k−1
)
. Let B = {Ac : A ∈ A}. Recall that we denote iterated neighbourhoods in the

cube by N i(·). Note that |N i(A)| = |N i(B)| for any i ≥ 0, as A and B are isomorphic under

the automorphism of the cube that interchanges 0 and 1 in each coordinate. As A ⊂ {0, 1}n is

t-intersecting we have N t−1(A) ∩ B = ∅, so |N t−1(A)| ≤ 2n − |B| ≤
(

n
≥n−k+1

)
+ θδ

(
n−1
k−1
)
.

We claim that there is i < t − 1 with |∂v(N i(A))| < (1 + c
n )
(

n
k−i−1

)
, where c = 10−4δ. To see

this claim, note that if it fails then
(

n
≥n−k+1

)
+θδ

(
n−1
k−1
)
≥ |N t−1(A)| ≥ |A|+

∑t−2
i=0(1+ c

n )
(

n
k−i−1

)
≥(

n
≥n−k+1

)
− θδ

(
n−1
k−1
)

+ c
n

∑t−1
i=1

(
n
k−i
)
. However, if t <

√
n we have c

n

∑t−1
i=1

(
n
k−i
)
> 10−5δ(t −

1)n−3/22n > 2θδ
(
n−1
k−1
)

or if t ≥
√
n we have c

n

∑t−1
i=1

(
n
k−i
)
≥ c

n (1−e−t2/2n)2n−1 > θδe−t
2/2n2n−1 >

2θδ
(
n−1
k−1
)
. This contradiction proves the claim.

As |A| ≥
(
n
≥k
)
− θδ

(
n−1
k−1
)

=
(

n
≥k+1

)
+
(
n−1
k

)
+ (1 − θδ)

(
n−1
k−1
)
, by Harper’s Theorem and (8)

we have |N i(A)| ≥
(

n
≥k+1−i

)
+
(
n−1
k−i
)

+ (1 − θδ)
(
n−1
k−i−1

)
=
(

n
≥k−i

)
− θδ

(
n−1
k−i−1

)
. Recalling that

|N i(A)| ≤
(

n
≥k−i

)
, by Theorem 4.9 we have |N i(A)4HA| ≤ 5θδ

(
n−1
k−i−1

)
for some Hamming ball

HA. Equivalently, |N i(B)4HB | ≤ 5θδ
(
n−1
k−i−1

)
for the Hamming ball HB = {Ac : A ∈ HA}.

Write HB = Bnn−k+i(C) for some C ∈ {0, 1}n, so HA = Bnn−k+i(Cc), and B′ = N i(B) ∩ HB .

We have |B′| ≥
(

n
≥k−i

)
− 5θδ

(
n−1
k−i−1

)
=
(

n
≥k+1−i

)
+
(
n−1
k−i
)

+ (1− 5θδ)
(
n−1
k−i−1

)
. By Harper’s Theorem

and (8) we have |N t−1−i(B′)| ≥
(

n
≥k+2−t

)
+
(
n−1
k+1−t

)
+ (1 − 5θδ)

(
n−1
k−t
)

=
(

n
≥k+1−t

)
− 5θδ

(
n−1
k−t
)
.

As N t−1−i(B′) ⊂ N t−1(B) ∩ Bnn−k+t−1(C) and A ∩ N t−1(B) = ∅ we deduce |A \ Bnn−k(Cc)| =

|A ∩ Bnn−k+t−1(C)| ≤ 5θδ
(
n−1
k−t
)

= 5θδ
(
n−1
k−1
)
, so |A4Bnn−k(Cc)| ≤ 11θδ

(
n−1
k−1
)
.

To prove the first statement of the lemma, it remains to show Bnn−k(Cc) =
(
[n]
≥k
)
, i.e. C =

∅. Supposing that C 6= ∅, we will obtain a contradiction to A being t-intersecting, by finding

A,A′ ∈
(
[n]
k

)
such that A4C and A′4C are in A with |(A4C) ∩ (A′4C)| ≤ t − 1. To do so,

set A′ = {A ∈
(
[n]
k

)
: A4C ∈ A} and note that |A′| ≥ (1 − 6θδ)

(
n
k

)
. For each ` ∈ [0, |C|] let(

[n]
k,`

)
:= {A ∈

(
[n]
k

)
: |A ∩ C| = `}. Note that ∪`∈[0,|C|]

(
[n]
k,`

)
=
(
[n]
k

)
and a small calculation gives

|∪`>|C|/2
(
[n]
k,`

)
| ≥ 1

4

(
n
k

)
, as k ≥ n/2. It follows that

∑
`>|C|/2 |A′∩

(
[n]
k,`

)
| ≥

∑
`>|C|/2 |

(
[n]
k,`

)
|−6θδ

(
n
k

)
≥∑

`>|C|/2(1−24θδ)|
(
[n]
k,`

)
|. Therefore |A′∩

(
[n]
k,`

)
| ≥ (1−24θδ)|

(
[n]
k,`

)
| > 1

2 |
(
[n]
k,`

)
| > 0 for some ` > |C|/2.
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Now consider the graph G on vertex set
(
[n]
k,`

)
in which A1A2 is an edge if A1 and A2 are as disjoint

as possible when restricted to both C and [n] \ C, i.e. |A1 ∩A2 ∩ C| = max(2`− |C|, 0) = 2`− |C|
and |A1 ∩ A2 ∩ ([n] \ C)| = max(2(k − `) − (n − |C|), 0). Clearly G is regular and non-empty (we

cannot have ` = |C| = k as this would give ∅ ∈ A, but A is t-intersecting). Therefore A′ ∩
(
[n]
k,`

)
contains an edge A1A2 ∈ E(G). But this gives |(A14C) ∩ (A24C)| = |A1 ∩ A2 ∩ ([n] \ C)| =

max(2(k − `)− (n− |C|), 0) < t, since ` > |C|/2. This contradiction gives C = ∅.
Writing E = |A \

(
[n]
≥k
)
| and D = |

(
[n]
≥k
)
\ A|, it remains to show D ≥ E′. To see this, suppose

for a contradiction that D < E′. By definition of E′ we have |∂t−1(I
(k)(
n
k

)
−D

)| >
(

n
n−k+1

)
− E

and |∂t−1(I
(k−1)
E )| ≥ E′ (otherwise {Ac : A ∈ ∂t−1(I

(k−1)
E )} ⊂

(
[n]
k

)
contradicts the definition of

E′). Then Lemma 4.3 gives |N t−1(A)| ≥ |N t−1(Jm,D,E)| >
(

n
≥n−k+1

)
− E + E′, so |A| = |B| ≤

2n − |N t−1(A)| <
(
n
≥k
)
− E′ + E < |A|, contradiction. Therefore D ≥ E′, so |A| ≤ |GE |. 2

Our final application is a stability version of Frankl’s bound for the Erdős Matching Conjecture.

Proof of Theorem 1.6. Suppose A ⊂
(
[n]
k

)
has no matching of size t+1 and |A| >

(
n
k

)
−(1+ rc

n )
(
n−t
k

)
.

Let A′ be the set of A′ ∈
(

[n]
k+r

)
that contain some A ∈ A. Then A′ has no matching of size t+ 1,

so |A′| ≤
(
n
k+r

)
−
(
n−t
k−r
)

by [14]. Let B =
(
[n]
k

)
\ A and B′ =

(
[n]
k+r

)
\ A′. Then |B′| ≥

(
n−t
k+r

)
and

∂r(B′) ⊂ B, so |∂r(B′)| ≤
(
n
k

)
− |A| < (1 + rc

n )
(
n−t
k

)
.

We now proceed similarly to the proof of Theorem 1.4. We define Bk+r, . . . ,Bk by Bk+r = B′
and Bi = ∂(Bi+1) for k + r > i ≥ k. We define xi ≥ k by |Bi| =

(
xi

i

)
and note that xi ≥ xi+1 for

k+ r > i ≥ k. Then
(
xk+r

k+r

)
= |B′| ≥

(
n−t
k+r

)
gives xk+r ≥ n− t and

(
xk

k

)
= |Bk| < (1 + rc

n )
(
n−t
k

)
gives

xk < (1 + rc
kn )(n− t) by Lemma 2.1.i.

Now we claim that |∂(B`)| ≤ (1+ 4c
n )
(
x`

`−1
)

for some ` ∈ [k+1, k+r]. Suppose for a contradiction

that this fails. As x` ≥ n− t ≥ (t+ 1)` for ` ≤ k + r, by Lemma 2.1.ii we have x` ≥ (1 + c
kn )x`+1.

However, this implies xk ≥ (1 + c
kn )rxk+r ≥ (1 + rc

kn )(n− t), which contradicts our previous upper

bound, so the claim holds.

By Theorem 1.2, there is S ⊂ [n] with |S| ∈ {bx`c , dx`e} so that |B`4
(
S
`

)
| ≤ δ

(|S|−1
`−1

)
. We claim

that |S| = n−t. To see this, first note that
(
x`

`

)
≤
(|S|
`

)
+δ
(|S|−1
`−1

)
≤
(|S|+δ

`

)
by (3), so |S| ≥ x`−δ >

n− t−1. On the other hand, if |S| ≥ n− t+ 1 then |B`| ≥
(
n−t+1
`

)
− δ
(
n−t
`−1
)

=
(
n−t
`

)
+ (1− δ)

(
n−t
`−1
)
,

so (8) gives |Bk| ≥
(
n−t
k

)
+ (1 − δ)

(
n−t
k−1
)
. As δ ≤ 1/2 and r ≤ k this contradicts the earlier bound

|Bk| < (1 + rc
n )
(
n−t
k

)
, so the claim holds.

Now |B` ∩
(
S
`

)
| ≥

(|S|
`

)
− δ
(|S|−1
`−1

)
=
(|S|−1

`

)
+ (1 − δ)

(|S|−1
`−1

)
, so |Bk ∩

(
S
k

)
| ≥

(|S|−1
k

)
+ (1 −

δ)
(|S|−1
k−1

)
=
(|S|
k

)
− δ
(|S|−1
k−1

)
by (8). Setting T = Sc and using r ≤ k, we deduce that |A4ST | <

2δ
(|S|−1
k−1

)
+ rc

n

(
n−t
k

)
≤ 3δ

(
n−t−1
k−1

)
. 2

6 Concluding remarks

We have obtained tight stability results on various problems for families that are close to extremal.

One consequence of our stability version of Harper’s vertex isoperimetric inequality is a character-

isation of the extremal families for sets of the same size as a generalised Hamming ball; the latter

was independently obtained by Raty [31]. Our stability result in the case of ball-sized sets applies

to families with vertex boundary that is within a factor of 1 + O(1/n) of the minimum possible.

We gave an example to show that the same accuracy of stability does not hold for larger vertex

boundary, but this still leaves open the question of establishing some stability for a wider range

of approximations to the minimum. Recently this has been achieved for ball-sized sets, where the

ball has radius o(log n), in independent work (with a different proof technique) by Przykucki and

Roberts (personal communication).
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We would be particularly interested in knowing the level of isoperimetric approximation required

for stability in the dense case (families of size Ω(2n)); we believe that the following may be true.

Conjecture 6.1. Given ε > 0 there is δ > 0 such that the following holds. Suppose A ⊂ {0, 1}n
with |A| ≥ ε2n and |∂v(A)| ≤

(
1 + δ√

n

)
Blov(|A|). Then |A4H| ≤ ε|A| for some Hamming ball H.

If true this dependence would be tight, as shown by taking A = H×{0, 1}d where H is a Hamming

ball of size 2n−d−1 (say) in {0, 1}n−d with d = Θε(n
1/2).
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[13] P. Frankl, Erdős–Ko–Rado theorem with conditions on the maximal degree, J. Combin. Theory

Ser. A 46 (1987), 252–263.
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